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Abstract 

Coal is the most abundant fossil fuel in the United States and remains an essential source 

of energy. While more than half of coal production comes from surface mining, nearly 

twice as many workers are employed by underground operations.  

 

One of the key pieces of equipment used in underground coal mining is the continuous 

mining machine. These large and powerful machines are operated in confined spaces by 

remote control. Since 1984, 40 mine workers in the U. S. have been killed when struck or 

pinned by a continuous mining machine. It is estimated that a majority of these accidents 

could have been prevented with the application of proximity detection systems.  

 

While proximity detection systems can significantly increase safety around a continuous 

mining machine, there are some system limitations. Commercially available proximity 

warning systems for continuous mining machines use magnetic field generators to detect 

workers and establish safe work areas around the machines. Several environmental fac-

tors, however, can influence and distort the magnetic fields. To minimize these effects, a 

control system has been developed using electromagnetic field strength and generator 

current to stabilize and control field drift induced by internal and external environmental 

factors.  

 

A laboratory test set-up was built using a ferrite-core magnetic field generator to produce 

a stable magnetic field. Previous work based on a field-invariant magnetic flux density 

model, which generically describes the electromagnetic field, is expanded upon. The ana-

lytically established transferable shell-based flux density distribution model is used to ex-

perimentally validate the control system. By controlling the current input to the ferrite-

core generator, a more reliable and consistent magnetic field is produced. Implementation 

of this technology will improve accuracy and performance of existing commercial prox-

imity detection systems. These research results will help reduce the risk of traumatic inju-

ries and improve overall safety in the mining workplace. 
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Chapter 1:  Introduction 

 

This work will expand upon previous research efforts to improve the performance of 

proximity detection systems used in underground coal mining. The first chapter examines 

the issues of safety and health in the mining industry, specifically in underground coal 

mining. Chapter 1 also reviews proximity detection technologies and systems currently 

being applied to the mining industry.  

 

Chapters 2 and 3 develop theoretical and experimental electromagnetic proximity detec-

tion. Fundamental proximity detection systems components are introduced in Chapter 2. 

The governing equations that describe magnetic field generation and detection is re-

viewed, and the magnetic shell model is developed. Position triangulation is theoretically 

established through the application of a 2 generator system. Chapter 3 describes the ex-

perimental system that is used to demonstrate electromagnetic proximity detection in a 

laboratory environment. The magnetic fields produced by the experimental system are 

used to validate the magnetic shell model and demonstrate position triangulation. The in-

fluence of temperature on the performance of the experimental system is also investi-

gated. 

 

The next two chapters develop and demonstrate a control system approach to limit envi-

ronmental influences observed on the experimental system. A numerical model of the ex-

perimental system is established in Chapter 4.  A control system is developed to reduce 

the environmental influences identified in Chapter 3. Different approaches are contrasted 

and discussed to meet the experimental system requirements. Finally, the control system 

is experimentally implemented and demonstrated in Chapter 5. 

 

The remaining chapter summarizes the contribution of this work. Conclusions and limita-

tions of this study are examined. Future investigations are also considered.      
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1.1:  Mine Worker Safety and Health 

 

A large part of the energy and raw materials that feed the U.S. economy comes from min-

ing. Copper for electronic products, bauxite for aluminum, and coal for energy generation 

are just a few examples of how mined commodities are used by modern society. Extract-

ing and processing mined commodities has become increasingly complex and demanding 

for workers over the last century.  

 

This inherently dangerous industry has historically had some of the highest rates of fatal-

ity and injury. During the first part of the last century, more than 1,000 fatal injuries were 

occurring every year within the mining industry [1]. With the introduction of improved 

mining methods, regulations, and technology, fatal injury rates have decreased to less 

than 200 annually in recent years. However, fatal injury rates in mining remain more than 

four times higher than the average for all other industries [2]. Nonfatal occupational inju-

ries and illness rates are less than in private industry, but are nonetheless a major concern 

for mine workers due to respiratory diseases and musculoskeletal disorders [3]. This 

same general trend of fatalities, injuries, and illnesses for the overall mining industry sec-

tor can also be observed in the coal industry.  

 

Over the last century, the U.S. government has promulgated legislation aimed at improv-

ing the safety and health of coal mine workers. At the turn of the 20th century, there were 

a number of historic coal mining disasters that resulted in significant loss of life. A series 

of underground coal mine explosions led to the formation of the U.S. Bureau of Mines 

(BOM) in 1910, and eventually the creation of the Mine Safety and Health Administra-

tion (MSHA) in 1977 [4, 5]. As postmortem medical toxically evolved, it was realized 

through examination of the victims of various underground coal mine explosions that 

pneumoconiosis (black lung disease) is a substantial health concern for mine workers. 

This, along with other mitigating factors, eventually led Congress to pass the 1969 Coal 
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Act, which drastically increased federal enforcement powers in U.S. coal mines. After the 

legislation passed, the coal mining fatality rate dropped by 50%, from 202 to 103 fatali-

ties per 100,000 full-time employees in the late 1960s and early 1970s [6]. 

 

During the 1980s and 1990s, coal mining research efforts in the U.S. continued to focus 

on regulation and enforcement. The initial development of mining technology and sys-

tems that could reduce worker exposure to underground hazards began to show potential 

[7, 8]. Reducing fatalities and improving mine worker health continued to be a primary 

focus. However, refinement and application of new mining methods, procedures, and 

technologies began to be integrated through the industry. As production and consumption 

continued to increase, so did mine worker safety [9]. 

 

More recently, the U.S. MINER Act was passed by Congress in 2006 to further advance 

health and safety efforts in the mining industry. The Mine Improvement and New Emer-

gency Response (MINER) Act was drafted in response to tragedies that occurred at the 

Sago, Aracoma, and Darby coal mines [10]. The law further improves U.S. coal mine 

safety through increased mandatory training, upgrading mining standards, improving 

mine emergency response, and requiring enhanced technology underground for post-dis-

aster communications [11, 12]. This new legislation also developed a completive grant 

system to quickly develop, evaluate, and adapt new safety technologies used in other in-

dustries to the mining industry [13]. Although this legislation was enacted almost a dec-

ade ago, the full impact on mine worker safety and health has yet to be determined [14]. 

The goal of “zero harm” will only be realized if government, industry, and academia 

work together to improve mine worker safety and health.  

   

1.2:  Coal Mining 

 

Coal is a basic component of an industrialized society, and has been a valuable asset to 

the United States since its inception. Coal was first discovered and mined in the United 
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States near what is today Richmond, Virginia, and was a strategic resource during the 

revolutionary war [15]. It also provided a needed energy source to fuel the industrial rev-

olution. Because of its abundance, coal will continue to be a component of the national 

energy strategy for the foreseeable future.     

 

Despite falling production due to declining natural gas prices, coal continues to be a key 

component of the national energy strategy. Even though coal production fell by 16% be-

tween 2008 and 2013, it is nevertheless projected to provide 34% of the fuel for electric-

ity generation in the U.S. by 2040 [16]. Although coal can be extracted through both sur-

face and underground mining operations, over the last 5 years, roughly 30% of U.S. coal 

production has come from underground mines [17]. While more coal is produced by sur-

face mines, more workers are employed in the U.S. by underground mining operations. 

 

Most coal is formed from sedimentary organic plant life that has been exposed to heat 

and pressure over time. There are four main types of coal: anthracite, bituminous, subbi-

tuminous, and lignite. This classification is based on the carbon content of the coal, 

which is related to the amount of heat energy that can be produced through combustion. 

Initially, anthracite was preferred over other types of coal, but today more than 92% of 

coal produced in the United States is bituminous or subbituminous [17]. Figure 1.1 shows 

coal reserves and types by geographic location within the United States [18]. While most 

of the bituminous and anthracite coal is located in the eastern United States, the west has 

more subbituminous and lignite coal. Due to greater size and higher value of coal depos-

its, the eastern half of the U.S. has more active surface and underground coal mining op-

erations [19]. The type, geographic location, and seam depth can determine the mining 

method used to extract the coal. 

 

Historically, coal mining in the United States was done using primitive methods. Visible 

ore deposits were mined using quarrying or trenching techniques, by which digging was 

done using hand tools. Underground mines began to replace surface quarries during the 

19th century. The first underground coal mines were drift mines that cut into hillsides. 
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Later, shaft mines were used to trap coal seams deep beneath the surface. Coal was 

loaded onto carts or boxes and dragged out of the mine [20]. Eventually, tunnels were 

bored into the coal seam to make a grid-like system of “pillars” to support the mine roof 

and provide ventilation. Again, simple tools and primitive machinery were employed un-

til the 1830s when blasting methods became popular [21]. With the introduction of com-

pressed air power at the end of the 19th century, engineers began to examine new ways of 

mining coal underground. 

 

 
 

Figure 1.1: Anthracite, Bituminous, Subbituminous, and Lignite coal deposits in the United States [18] 

     

New machinery and better methods were used to mine coal with the start of the industrial 

revolution. The percussive coal cutter, a drastic improvement over the pick and ax, was 

light enough to be carried and operated by two men. At the turn of the 19th century, cut-

ting-chain machines were developed to undercut the ore seam for quicker and cleaner ex-

traction [22]. However, industry was slow to implement new technology due to the power 

and infrastructure requirements of new machinery. It was not until the introduction of the 
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continuous mining machine (CMM) in 1948 that new mining methods were applied to in-

crease production and reduce operating costs [23]. With the introduction of machinery, 

mine worker safety was improved, since explosives were no longer required, and the 

number of workers necessary to operate the mine was reduced. Mechanizing the mining 

process also allowed underground coal mines to expand in size and depth.  

 

1.2.1. Surface Mining 

 

Due to modern machinery and advanced methodologies, surface mining operations pro-

duce a majority of the coal mined in the United States [16]. When a coal seam is rela-

tively close to the surface, overburden soil and rock is removed to expose the coal seam. 

However, there are various geographical and geological considerations that must be taken 

into account for a surface coal mine [24-26]. Most surface coal operations can be catego-

rized as open pit or open cast mining. The specific methodologies, processes, and ma-

chinery used in surface mines are a function of the coal seam inclination and the sur-

rounding topography. 

 

Removal of overburden and coal extraction at surface mines is done using many different 

types of equipment. Drilling and blasting methods can be used to initially loosen and cast 

overburden. Digging and loading functions are completed using shovels and front-end 

wheel loaders of various capacities. In flat conditions, a surface miner can be used to 

combine cutting, crushing, and loading functions. For large scale operations, draglines 

can process massive amounts of overburden. Highwall miners can be used for the extrac-

tion of thin coal seams in certain geographical conditions or when overburden removal is 

cost prohibitive. Finally, haul trucks are the primary equipment used to transport material 

at surface operations. Auxiliary equipment, such as bulldozers and scrapers, can also be 

found performing various support functions at a surface coal mine.     
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1.2.2. Underground Mining 

 

Underground mining operations produce a significant portion of the U.S. coal supply and 

employ more workers than do surface mining operations. Two basic methods are used to 

extract coal in underground coal mines: room-and-pillar and longwall [24]. As with sur-

face mining approaches, geological and geographic factors can influence which under-

ground coal mining method is used. Ancillary operations such as roof control, ventilation, 

and maintenance must also be performed regardless of the mining underground process 

chosen.    

 

In room-and-pillar mining, intersecting entries are cut into the coal seam. The remaining 

columns of coal are left in place to help support the mine roof. The general layout and 

machine interaction of an underground room-and-pillar coal mine is shown in Figure 1.2. 

After an entry is mined, the mine roof between the coal pillars is further supported by 

drilling rods into the ceiling, attaching the roof to multiple strata above the coal seam. 

Mining, haulage, and support functions are carried out using specific kinds of equipment 

that work in a repeated sequential cycle. Machine interaction between these functions 

must be optimized to reduce inefficacies and improve mine profit. Underground coal 

mine entries and cross-cuts in the United States are typically 20–30 ft. wide, and pillars 

are roughly 100 ft. long. The mine height can be between 42 in. and 12 ft. high, depend-

ing on the thickness of the coal seam being mined [24, 27]. The mined coal is moved 

from the working section by haulage equipment to the section conveyor belt, where it is 

taken out of the mine for further processing.    
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Figure 1.2: Diagram of a Five Entry Room-and-Pillar Underground Coal Mine 

 

The longwall mining method does not require a permanent roof support structure, and, 

therefore, has a better resource recovery rate than room-and-pillar mining. However, 

longwall mining can cause surface property damage due to subsidence. Figure 1.3 shows 

the general layout and components of the longwall mining process used in underground 

coal mines. Entries are driven similar to room-and-pillar mining to develop the longwall 

panel, which can be 8,000 to 21,500 ft. long in the United States [24]. The coal seam is 

cut using an articulating rotary cutting drum called a shearer. As the coal fractures, it falls 

onto an onboard conveyor system that moves with the shearer. The onboard conveyor 

system is connected to the mine’s continuous haulage system, eliminating the need for in-

dividually operated mobile equipment during the mining process. The mine roof is tem-

porarily braced by a system of hydraulic roof supports that advances as the shearer 

traverses back and forth across the coal seam. As the system advances in the direction of 

the coal seam, the unsupported overburden collapses behind the hydraulic roof supports.  
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Figure 1.3: Diagram of Layout and Components of an Underground Longwall Coal Mine 

 

Modern underground coal mining methods rely on the use of large and powerful machin-

ery. These methods have led to increased production, reduced operating cost, and overall 

improved safety for underground mine workers. Unfortunately, machinery is often oper-

ated in confined spaces with limited visibility, which can contribute to underground acci-

dents, injuries, and fatalities.   

 

There is a variety of machinery used to extract coal in an underground mine. As de-

scribed in the previous section, the type of mining method deployed will largely influence 

which equipment is used. There are also geographical and geological considerations that 

must be taken into account. However, several types of mobile equipment are fundamental 

to the underground coal mining process regardless of these considerations.  

   

To move extracted material from the working section, there are many types of equipment 

used for mine haulage. Different machines, such as cable-reel shuttle cars, articulating 
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coal haulers, battery-powered scoops, and continuous haulage units, can be put into oper-

ation depending on function and mine logistics. These mobile machines are capable of 

transferring material from the working section to the mine haulage systems, and are pow-

ered by electric or diesel motors. Shuttle cars, coal haulers, and scoops are typically four-

wheel drive, rubber tire vehicles that have a maximum speed of 6 mph [24]. It is common 

practice to have multiple mobile haulage units in operation at the same time to increase 

mine production. Continuous haulage units, while still mobile, are more permanent ma-

chines used in low-seam applications that advance with the CMM and connect directly to 

the main mine conveyor system.        

 

Roof bolting machines are used to develop permanent support for the mine ceiling and 

walls, called ribs, after an entry has been cut. These machines use high-power electric 

motors to propel subsystems and components. Most roof bolting machines are rubber tire 

vehicles but operate at much slower speeds, since they are not used for mine haulage. A 

hydraulic roof support system is used for temporary support as the rotary drilling mast is 

operated. After a hole is drilled, a roof bolt is inserted to reinforce the mine roof. The ex-

act type of roof bolt mechanism (i.e., mechanical, resin-assisted, grouted, tensioned rebar, 

etc.) used for support depends on the mine geology and stress conditions. The entire drill-

ing platform articulates to allow for the drilling of multiple holes without moving the en-

tire machine.   

 

The CMM is an essential piece of equipment used in the development of mine entries to 

set up both longwall and room-and-pillar operations. A typical CMM used in under-

ground coal mining operations is shown in Figure 1.4. CMMs are used to simultaneously 

cut, gather, and remove aggregate from the working section(s) of an underground mine. 

These machines have a series of rotating cutting drums that are fitted with carbide bits 

that gouge the mine seam (known as the face). Fractured pieces of coal are scooped up by 

the gathering arms that are located underneath the cutting head. An onboard articulating 

conveyor system moves aggregate from the front of the machine to the rear, where mate-

rial is handled by mine haulage equipment. 
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Figure 1.4: Continuous Mining Machine (Courtesy of Joy Global) 

 

To meet a wide variety of underground mining conditions, there are many different mod-

els of CMMs that are commercially available. All CMMs are continuous track vehicles, 

and are capable of pivoting at a high rate of speed [28]. Like roof bolting machines, they 

rely on high- power electric motors to drive various machine subsystems and compo-

nents. These machines have a typical cutting width of 12 ft. and can operate in seam 

heights from 28 in. to 16.5 ft. [24]. The operator maneuvers the machine by remote con-

trol, and is typically positioned close to the end of the conveyor tail section. The size and 

power of these machines can make them difficult to manipulate in the confines of an un-

derground coal mine. 

 

1.3:  Machine-Related Accidents and Injuries 

 

Accidents, injuries, and fatalities associated with the operation of equipment and machin-

ery are a major concern for the mining industry. Mine workers interact with large and 

powerful equipment on a daily basis. While technology and methods have improved, 

there are still many risks that a mine worker can encounter [28-30]. When comparing 
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health and safety surveillance statistics, most severe machine-related accidents occur dur-

ing the extraction of and production of coal. However, across all commodities it has been 

observed that a majority of accidents occur at surface operations [30]. Often these ma-

chine-related accidents and injuries can have long-term health effects and can also have a 

significant economic impact [31]. 

 

Surface mine workers are typically responsible for having a constant situational aware-

ness over an expansive geographical area. For example, 9 out of 16 fatal collision-related 

accidents over a seven-year period happened while the machine was in reverse [30]. Inci-

dental examination of MSHA accident, injury, and illness statistics across all mining 

commodities show that “powered haulage” and “machinery” account for a majority of fa-

talities at surface mining operations [32]. Closer inspection reveals that non-powered 

hand tools are a significant contributor to non-fatal injuries, while off-road ore haulage is 

a common source of fatalities [33]. Similar findings are observed when comparing sur-

face and underground accident, injury, and illness statistics.  

 

Underground workers must often perform work tasks around machinery in confined envi-

ronments that are not properly illuminated. They must also be aware of the ever-changing 

geology that surrounds them.  Similar to the trends observed for all mining commodities, 

examination of MSHA accident, injury, and illness statistics for underground mining op-

erations show that the ‘powered haulage” and “machinery” categories also account for 

most of the fatalities. However, “fall of ground” has the most associated fatalities out of 

all individual categories [32]. This risk is unique to underground mine workers, as op-

posed to surface workers, due to the support and control of the underground environment.    

 

Pinning, striking, and crushing accidents involving underground mobile equipment are a 

particular safety concern for underground coal mine workers. Specifically examining 

MSHA fatality data for the ten-year time period of 2004 through 2014, shows that an av-

erage of 6.5 deaths occurred per year involving interactions between workers and under-
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ground machine operation. Table 1.1 shows the MSHA equipment classification and re-

sulting fatalities from powered haulage and machinery in underground coal mines during 

this period. A majority of these fatalities involved mobile equipment (continuous miner, 

load-haul-dump, and shuttle car) used during the mining process. Similar findings have 

been reported in other coal-producing countries [28, 34-36].  

 
Table 1.1:  Underground Coal Mining Equipment and Associated Fatalities from MSHA Accident, Injury, and 

Fatality Data from 2004 to 2014 

Mining Equipment Type No. of Fatalities 

Continuous miner, Tunnel borer, Road header 12 

Conveyor, Belt feeder, Stage loader, Hopper shaker, Belt structure 12 

Load-haul-dump, Scoop tram, Transloader, Unitrac, S&S Battery 13 

Locomotive, (motor) - rail-mounted (Battery, Steam, Electric, Air) 6 

Longwall subparts, Duke, Dowdy jack, Ramjack, Longwall shield 3 

Mancar, Mantrip, Personnel carrier, Porta bus, Jeep, Jitney, ATV 3 

Mine car, Timber truck, Nipper truck 3 

Rock or roof bolting machine, Pinning machine, Truss bolter 1 

Shuttle car, Buggy, Ram car, Young buggy, Teletram car 11 

Tractor, Supply car 1 

 

Repeated machine-related accidents have resulted in the promulgation of new laws and 

regulations. Initial legislation and rulemaking efforts in the U.S. have focused on reduc-

ing injuries and fatalities around specific equipment types in underground coal mines [37, 

38]. South Africa has recently produced legislation to ensure collisions between trackless 

mobile machinery and pedestrian workers do not occur [39]. Although mining is a signif-

icant economic component of other countries around the world, there are no other man-

dates or proposed legislation related to the prevention of machine-related accidents and 

fatalities. 
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Legislative efforts in the U.S. have concentrated on the CMM and mobile mining equip-

ment used in underground coal mines. Since the introduction of remote control operation 

in 1984, 40 fatalities have occurred involving a CMM in underground coal mines. An 

analysis determined that a proximity detection system with the capability to automatically 

disable machine motion could have been a preventative factor in 32 of the fatalities in-

volving CMMs [40]. To address this problem, MSHA introduced a rule requiring proxim-

ity detection systems on all CMMs used in underground coal mines [37]. Initial rule-mak-

ing efforts are underway to require proximity detection on all mobile equipment used in 

underground coal mines [38]. This effort is just one part of a concerted effort to reduce 

machine-related accidents and injuries across the mining industry.  

 

1.4:  Collision Avoidance and Proximity Detection  

 

Many technologies are available to reduce machine-related accidents and fatalities within 

the mining industry. Collision avoidance systems can rely on a wide variety of technolo-

gies such as GPS, radar, laser-based distance sensing, and camera object recognition. 

Proximity detection senses the presence of nearby objects and typically employs technol-

ogies based on electromagnetics. Applications of collision avoidance and proximity de-

tection systems can be found throughout the mining industry across multiple commodi-

ties. However, the commodity type and mining method determine which technologies are 

applicable. For example, open pit surface mines can utilize collision avoidance technolo-

gies, while underground coal mines must rely on proximity detection technologies.   

 

Innovation by the automotive industry has led to the advancement of collision avoidance 

technology. The automotive industry has conducted extensive research and development 

into obstacle detection, trajectory prediction, and collision avoidance [41-44]. Features 

such as forward collision warning, autobrake, lane departure warning and prevention, 

adaptive headlights, and blind spot detection are common options on late model highway 

vehicles. Most of these systems rely on a combination of radar, vision-based detection, 
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and internal trajectory tracking [45, 46]. While no country in the world has legislated col-

lision avoidance for automobiles, the U.S. Department of Transportation is conducting 

the largest trail of vehicle-to-vehicle (V2V) communication systems for collision avoid-

ance [47, 48]. Information sharing between vehicles is expected to greatly improve 

safety, mobility, and the environment. Combining collision avoidance technologies with 

V2V communication systems provides the possibility of fully autonomous automobiles 

without drivers. 

 

The mining industry has also begun to adopt autonomous systems in an effort to increase 

productivity and improve safety. Teleoperation and driverless haul trucks are beginning 

to emerge at surface mining operations [49-52]. There have also been various efforts to 

implement autonomous systems in an underground mining environment [8, 53, 54]. 

While related, it should be noted that design criteria for eliminating machine-related fa-

talities and accidents are different from the development of autonomous systems. Alt-

hough they may reduce some injuries and fatalities, many considerations must be taken 

into account due to worker interactions with automated technologies [55]. 

 

Some of the collision avoidance technologies developed for the automotive industry have 

transferred to the surface mining operations. However, some important considerations in-

clude large mining vehicles used at surface mining operations have considerable blind 

spots. In addition, vehicle operators must be ever aware of environmental conditions, in-

vehicle management systems, navigation systems, and radio communications. Trajectory 

prediction is also more difficult for mining applications due to unconventional vehicle 

dynamics, loading, and inconsistent terrain. Despite these constraints, there has been suc-

cessful application of collision avoidance technologies at surface mines [56-58]. These 

technologies have also been successfully applied to off-highway and construction vehi-

cles [59-61]. There are further constraints that must be taken into account when imple-

menting collision avoidance in an underground mining environment.  
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Due to the environment and location, GPS-based collision avoidance systems are not 

available for underground mining applications. Further complicating matters, mobile 

mining equipment used in underground stone and metal/non-metal applications often 

travel between the surface and underground. These systems must be able to operate seam-

lessly between the surface, when GPS is available with other surface-only equipment, and 

the underground environment, when there is no GPS available. However, some methods 

have been developed to determine coordinate location in an underground and/or indoor 

environment [62-64]. Most systems used in underground mining environments combine 

proximity detection and collision avoidance technologies due to the confined spaces and 

interaction with pedestrian workers.  

 

There are more stringent requirements that limit technologies available for machine 

safety systems used in underground coal mines compared to the other commodities. The 

presence of methane and the possibility of ignition during the mining process restrict the 

use of electronic components in underground coal mines. These restrictions vary based 

upon geological conditions and the regulations imposed by the country in which the mine 

is located [65].  

 

Several technologies have been investigated despite the limitations on sensors and electri-

cal components for proximity detection systems used in underground coal mines. Many 

industries use Radio Frequency Identification (RFID) for tracking the movement of ob-

jects or people. The mining industry has implemented RFID technologies for the tracking 

and movements of people, equipment, and supplies throughout mines [62, 66]. These sys-

tems are capable of providing information on whether a receiver worn by a person or 

mounted on a machine is within range of the transmitter, but they are ineffective at 

providing an accurate distance from the transmitter to the receiver. Another emerging 

technology is intelligent video utilizing either mono- or stereo-vision to identify and visu-

ally locate people and objects [58, 67, 68]. Application of this in underground mines, 

however, is likely to be very challenging due to poor lighting, dust, and the extreme diffi-
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culty in keeping the camera lenses clean. Electromagnetic-based proximity detection sys-

tems have demonstrated promise to overcome some of the limitations imposed the under-

ground coal mining environment. Due to their operating frequency, these systems are not 

affected by the confined space of an underground mine [69]. There are currently four 

commercially available electromagnetic-based systems approved to meet the permissibil-

ity standards for use in U.S. underground coal mines [70]. The widespread adoption of 

proximity detection technology is expected to significantly improve mine worker safety 

and health.  
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Chapter 2:  Electromagnetic Proximity Detection 

 

This chapter examines the generation and detection of magnetic fields that are used for 

proximity detection systems. A description of electromagnetic proximity detection sys-

tem parameters and components are examined. Theoretical development of magnetic 

fields produced by ferrite core generators will be used to establish the relationship be-

tween magnetic flux density and distance. Methods are then examined to model and ap-

proximate the magnetic fields used by proximity detection systems. Finally, triangulation 

and localization methods are investigated using shell-based magnetic field modeling.  

 

2.1:  Proximity Detection for Underground Coal Mining 

 

Due to the mining process and environment, electromagnetic-based proximity detection 

systems have been developed to reduce machine-related accidents in underground coal 

mines. The first proximity detection systems installed in underground coal mines were 

developed for CMMs. However, first generation electromagnetic-based systems were 

also tested on other types of mining equipment [71]. Using electromagnetic fields, these 

systems warn underground workers and disable the machine motion when they enter 

known hazardous areas around the machine.   

  

There are several basic components that interact within an electromagnetic-based proxim-

ity detection system. Examples of proximity detection system components for a CMM 

are shown in Figure 2.1. A machine-mounted field ferrite-core generator produces a mag-

netic field that covers a geographic area of interest around the machine. Due to the size 

and geometry of mining equipment, more than one generator is often deployed to fully 

cover the machine. A worker-worn sensor detects the field strength, which correlates to a 

general distance from the generator. All workers who interact with and/or are within 

close vicinity to the machine must wear the sensor for the system to function properly. 

Magnetic field strength information is sent to the proximity system controller through a 
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900 MHz transmitter and receiver. Depending on the field strength reading, either a 

warning alarm or machine shutdown is issued.  

 

 
(a)       (b) 

 
Figure 2.1: CMM Electromagnetic Proximity Magnetic (a) Field Generator and (b) Sensor 

 

Proximity detection components are used to construct safety zones around a given ma-

chine. An example of a warning and shutdown zones around a CMM is shown in Figure 

2.2. The magnetic field generators (represented by blue rectangles) are mounted on the 

machine and transmit a magnetic field that is received by the worker-worn magnetic field 

sensor. Each generator is adjusted so that a specific magnetic field strength correlates to 

hazardous areas around the machine. The generators are pulsed at a rapid rate so they do 

not interfere with the field produced by each given generator. A coordinate system can be 

defined around the machine using the field strengths to describe different zones of safety 

around the machine. An alarm is triggered when the receiver enters the warning zone 

(yellow area around the CMM), and the machine is disabled when the receiver trespasses 

into the stop zone (red area around the CMM). 

 

The shape and size of the safety zones are defined by the magnetic field generators and 

machine characteristics. The shape of the zones are spherical in nature due to the mag-

netic fields produced by the ferrite-core generators. The size of safety zones are defined 
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based on the specific piece of equipment on which the proximity detection system is in-

stalled. For example, machine motion and human interaction was examined to determine 

the minimum safety zone sizes for the CMM [72].  

 

 
Figure 2.2: Proximity Detection Warning and Shutdown Zones on a Continuous Mining Machine 

 

Further refinements have been made on CMM proximity detection systems to improve 

performance and worker acceptance. Because of the complex shape of the magnetic 

fields, accurately determining distance can be difficult. This results in a somewhat ambig-

uous protection zone around the machine that does not provide for situational or intelli-

gent response to hazards. However, a mathematic model has been developed that can be 

used to triangulate exact worker location using the magnetic fields produced by multiple 

generators [73, 74]. Using this approach, zone sizes and boundaries can be based on pre-

defined distances and configured by software.  

 

Intelligent design has been incorporated to limit only machine functions that would in-

duce harm to surrounding workers rather than disabling all machine functions. This tech-

nology accurately calculates worker position relative to the CMM and issues situation-

specific alarms to warn or disable machine functions to protect the workers from machine 
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movements that could result in injury [75, 76]. An example of intelligent proximity de-

tection is shown Figure 2.3. Each numbered box represents a safety zone that is linked to 

specific machine motion capability depending on where workers are located. For exam-

ple, if a worker is located in zone 2, functions such as reverse and pivot right would be 

disabled, while functions such as forward and pivot left would be enabled. These intelli-

gent systems have demonstrated superior performance and increased user acceptance [77, 

78] .  

 

 
Figure 2.3: Example of Intelligent Proximity Detection Safety Zones for a CMM 

 

The performance of proximity detection systems used in underground coal mines can 

vary site to site. Several studies have investigated the performance of proximity detection 

systems used in underground coal mines. The studies examined different scenarios to try 

to quantify proximity detection system performance in an underground environment [69, 

79]. Several factors influence the accuracy and repeatability of proximity detection sys-

tems. Extreme temperature change can affect electromagnetic components and circuits. 

Parasitic coupling of the magnetic field with power cables. Other metal objects in the 

mine can also alter magnetic field distribution patterns. While proximity detection sys-

tems generally performed as designed during these evaluations, a wide range was ob-

served. 

 

 

 



www.manaraa.com

 

 

40 

2.2:  Electromagnetic Field Generation and Detection 

 

Proximity detection systems for underground coal mining equipment use electromagnetic 

fields to estimate worker distance to a machine. The system uses this information to issue 

warnings and/or disable machine functions. To establish magnetic fields around entire 

machines such as the CMM, multiple ferrite core generators are used. The magnetic field 

is detected by a sensor that is worn by workers and measures the magnetic field flux den-

sity. The value of magnetic field flux density from each sensor is used to derive a relative 

distance between the worker and the machine. 

 

2.2.1. Magnetic Field Generation  

 

The generation of magnetic fields for proximity detection systems can be understood by 

examining the low frequency application of loop antennas. The field radiation pattern of a 

small loop is derived by considering a square loop consisting of four linear dipoles. The 

same field equations can also be obtained by realizing a small square loop is equivalent to 

a short linear dipole [80, 81]. The analytic equations describing the fields of a short mag-

netic dipole will be the basis for the modeling efforts of electromagnetic proximity detec-

tion systems used in underground coal mines. 

 

An elementary antenna or radiator, such as a short linear dipole, can be examined to un-

derstand basic magnetic and electric field radiation patterns. The magnetic field radiation 

pattern for a short linear dipole is similar to the electrical field radiation patterns. Alt-

hough actual linear dipoles would be very thin and have plates at either ends for capaci-

tive loading, the electromagnetic fields produced by the system shown in Figure 2.4 are 

examined here. The medium surrounding the dipole is air, and the center of the dipole is 

located at the origin. The length of the dipole Δ𝑧𝑧 is small compared to the wavelength 𝜆𝜆, 

which ensures uniform current 𝐼𝐼 along the entire length of the antenna.   
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Figure 2.4: The ideal dipole antenna with a uniform current 

 

The magnetic field intensity 𝑯𝑯 can be obtained through the relationship with the mag-

netic vector potential 𝑭𝑭. 

 

 𝑯𝑯 =
1
𝜇𝜇
𝛁𝛁 × 𝑭𝑭 (2.1) 

 

The electromagnetic wave propagation is observed at a point 𝑃𝑃 in space from an antenna 

as illustrated in Figure 2.4. The vector potential for a short dipole antenna with a constant 

electric current amplitude 𝐼𝐼 can be expressed as:   

 

 𝑭𝑭 = 𝒛𝒛�𝜇𝜇𝐼𝐼 �
𝑒𝑒−𝑗𝑗𝑗𝑗𝑗𝑗

4𝜋𝜋𝜋𝜋

∆𝑧𝑧
2�

−∆𝑧𝑧
2�

𝑑𝑑𝑧𝑧 (2.2) 

 

where the electromagnetic wave propagation phase constant 𝛽𝛽 is represented by: 

 

 𝛽𝛽 =
2𝜋𝜋
𝜆𝜆

 (2.3) 
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The distance 𝜋𝜋 from the current element to a field point 𝑃𝑃 in Figure 2.4 is roughly equal 

to the distance 𝑟𝑟, between the origin and the same field point. Setting these distances 

equal and integrating Equation (2.2) yields the relationship: 

 

 𝑭𝑭 =
𝜇𝜇𝐼𝐼𝑒𝑒−𝑗𝑗𝑗𝑗𝑗𝑗

4𝜋𝜋𝑟𝑟
∆z𝒛𝒛� (2.4) 

 

Substituting Equation (2.4) into Equation (2.1) yields: 

 

 𝑯𝑯 =
1
𝜇𝜇
∇ × 𝑭𝑭 =

𝐼𝐼∆𝑧𝑧
4𝜋𝜋

�
𝑗𝑗𝛽𝛽
𝑟𝑟

+
1
𝑟𝑟2
� 𝑒𝑒−𝑗𝑗𝑗𝑗𝑗𝑗𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝝋𝝋�  (2.5) 

 

The magnetic field vector 𝑯𝑯 is perpendicular to z axis in Equation (2.5). This demon-

strates that even simple antennas, such as an ideal dipole, have a complicated field radia-

tion pattern at a distance close (near-field) to the antenna. For a given current, the magni-

tude of the magnetic field |𝑯𝑯| can be obtained from Equation (2.5) to give: 

 

 |𝑯𝑯| = �
𝐼𝐼∆𝑧𝑧
4𝜋𝜋

�
𝑗𝑗𝛽𝛽
𝑟𝑟

+
1
𝑟𝑟2
� 𝑒𝑒−𝑗𝑗𝑗𝑗𝑗𝑗𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝝋𝝋�� =

𝐼𝐼∆𝑧𝑧
4𝜋𝜋

��
𝑗𝑗𝛽𝛽
𝑟𝑟

+
1
𝑟𝑟2
� 𝑒𝑒−𝑗𝑗𝑗𝑗𝑗𝑗� 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 (2.6)  

 

Dividing constant current on both sides of Equation (2.6) produces the relationship: 

 

 
|𝑯𝑯|
𝐼𝐼

=
∆𝑧𝑧
4𝜋𝜋

��
𝑗𝑗𝛽𝛽
𝑟𝑟

+
1
𝑟𝑟2
� 𝑒𝑒−𝑗𝑗𝑗𝑗𝑗𝑗� 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 (2.7) 

 

By inspection, the right hand side of Equation (2.7) is a constant at a point 𝑃𝑃 in space for 

a given frequency and antenna dimensions. Equation (2.7) also implies that there are a 

number of points around the antenna that will have the same value, which can form a 

closed shell. For a given point at a distance from the antenna, there exists only one shell 

for that point. Moreover, each shell is unique in size, shape, and position with respect to 
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the antenna. These shell values can be used to approximate distance between the antenna 

and magnetic field.  

 

A small dipole antenna has a fixed radiation pattern for given antenna dimensions and 

frequency. However, other types of antennas have their own radiation patterns that are 

dependent on loop dimensions and operating frequency. A circular loop of electric cur-

rent produces a magnetic field that is nearly identical to the field of two oppositely 

charged magnetic monopoles. The magnetic radiation pattern of a small loop antenna is 

shown in Figure 2.5. The space pattern consists of doughnut-shaped figures of revolution 

about the axis of the antenna and is proportional to the sine of 𝑠𝑠. Basic understanding of 

the electromagnetic fields produced by generators can be used by proximity detection 

systems.    

 

The above analysis examines the magnetic field 𝑯𝑯 that is produced by an antenna. Prox-

imity detection systems measure the magnetic flux density 𝑩𝑩, which can be found 

through the relationship: 

 

 𝑩𝑩 = 𝜇𝜇𝑯𝑯 (2.8) 

 

 
Figure 2.5: Radiation Pattern for a Small Loop Antenna 
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Constant values of magnetic flux density 𝑩𝑩 at various points in the magnetic field can 

also be represented as a shell. The relationship between constant magnetic flux density 𝑩𝑩 

and distance from the magnetic field generating antenna can be exploited by proximity 

detection systems. Modeling the magnetic field as shells of constant flux density can de-

fine a safe zone perimeter or exact worker location around a machine.  

 

2.2.2. Electromagnetic Field Detection 

 

When using proximity detection systems in underground coals mines, workers wear a 

sensor that detects the signal produced by magnetic field generators. These sensors meas-

ure the magnetic flux density 𝑩𝑩 using small loop antennas on each of the three orthogonal 

axes. Voltage induced by the magnetic field in each of these antennas is measured and 

converted to the magnetic flux density 𝑩𝑩 along each axis. The vector sum of these meas-

urements is used to calculate total magnitude of the magnetic field. The value of the mag-

netic flux density 𝑩𝑩 can be used to estimate the distance between the generator(s) and 

sensor. 

 

To determine the magnetic field density at a point in space, an induced voltage 𝜀𝜀 is pro-

duced when a change in magnetic flux passes through a conductive loop [82]. This can be 

expressed using Faraday’s law as: 

 𝜀𝜀 = �𝑬𝑬 ⋅ 𝑑𝑑𝑑𝑑 = −
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= �
𝜕𝜕𝑩𝑩
𝜕𝜕𝑑𝑑

⋅ 𝑑𝑑𝑨𝑨 (2.9) 

 

Where the loop antenna has a total area 𝑨𝑨 and the total magnetic flux 𝑑𝑑 that passes 

through it. With a uniform magnetic field within a loop antenna that has a radius 𝑟𝑟 and 

number of turns 𝑁𝑁, the induced voltage can be determined by: 

 

 𝜀𝜀 = 𝑁𝑁�𝑬𝑬 ⋅ 𝑑𝑑𝑑𝑑 = −𝑁𝑁
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= −𝑁𝑁𝜋𝜋𝑟𝑟2
𝑑𝑑𝑩𝑩(𝑑𝑑)
𝑑𝑑𝑑𝑑

∙ �̂�𝐴 (2.10) 
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Due to a uniform current input, the time dependent magnetic field can be expressed as a 

continuous sinusoid with:   

 

 𝐵𝐵(𝑑𝑑) = 𝐵𝐵𝒎𝒎 sin𝜔𝜔𝑑𝑑 (2.11) 

 

Substitution of Equation (2.11) into Equation (2.10), and taking the derivative of 𝑩𝑩(𝑑𝑑)  

gives the relationship:  

 

 𝜀𝜀 = −𝑁𝑁𝜋𝜋𝑟𝑟2𝜔𝜔𝐵𝐵𝑚𝑚 cos(𝜔𝜔𝑑𝑑) cos(𝛼𝛼) (2.12) 

 

Where the angle 𝛼𝛼 is between the surface plane of the loop antenna and the magnetic flux 

density passing through the plane. Considering the Root Mean Square (RMS) value of 

Equation (2.12), the measured magnetic flux density can be represented by: 

 

 𝐵𝐵 =  
−𝜀𝜀

𝑁𝑁𝜋𝜋𝑟𝑟2𝜔𝜔 cos(𝛼𝛼) (2.13) 

 

For a single loop antenna, the measured magnetic flux density can be determined using 

Equation (2.13). Three orthogonal coils each aligning to their coordinate system can 

measure separate and distinct magnetic field values since the angle 𝛼𝛼 is unique in each 

direction. The magnitude of the magnetic flux density at a point in space can be ex-

pressed using the relationship: 

 

 𝐵𝐵 = �𝐵𝐵𝑥𝑥2 + 𝐵𝐵𝑦𝑦2 + 𝐵𝐵𝑧𝑧2 (2.14) 

 

Several considerations should be examined when developing systems to measure mag-

netic fields. To accurately measure the magnetic flux density at a point in space, the mag-

netic probe should be small. This reduces the error produced by a variation of magnetic 

flux density within the enclosed area of each coil in a probe. However, small coils com-

plicate system design of the probe.     
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As discussed in the previous section, magnetic field radiation patterns can be expressed 

as a shell. Many points having a different distance from an antenna can have the same 

measured value of magnetic flux density, and therefore reside on the same shell. Mag-

netic flux density at a point in space can only be used to determine the shell on which the 

point resides, giving an approximation of distance from magnetic field source. These 

magnetic flux density shells are not easily described by standard geometric shapes. An 

analytical model has been developed that describes the magnetic shell patterns [73]. This 

model can be used to improve proximity detection performance by more accurately deter-

mining the worker position around a machine.       

 

2.3:  Electromagnetic Field Modeling  

 

Magnetic field generators can be positioned so that the magnetic shell surfaces represent 

a geographical boundary. Using time-sequenced pulse generators and logical threshold 

values of magnetic flux density, the complex point shell zones can be defined. If a mag-

netic flux density is measured by the wearable component of a proximity detection sys-

tem that traverses a zone boundary, then an alarm is issued or the machine is shut down.  

However, discrepancies can occur between magnetic shell surfaces and desired zone 

boundaries. The zone boundaries are predefined and physically decoupled from the meas-

ured magnetic shell surfaces. Differences between the shell surfaces and zone boundaries 

produce false alarms and limit proximity detection performance.    

 

 

2.3.1. Magnetic Shell Model 

 

Defining the relationship between the magnetic field generator distance and flux density 

magnitude allows for a more precise estimate of sensor location. Several methods have 

been developed to model the magnetic field patterns generated by ferrite core coils used 
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by proximity detection systems [73, 83]. While these models can be used to describe the 

spherical nature of magnetic flux density point shells, the two-dimensional (2-D) forms 

are easier to evaluate and hold true due to the axial symmetry of magnetic fields.  

 

The magnetic shells produced by ferrite core generators can be defined in either polar or 

Cartesian coordinates. The diagram in Figure 2.6 shows a magnetic field generator coil 

and the associated 2-D coordinate system. Each point 𝑃𝑃 of a shell can be uniquely associ-

ated with a constant magnetic flux density 𝐵𝐵 and coordinate.  

 

 
Figure 2.6: Ferrite Core Generator and 2-D Coordinate Systems 

 

Constant magnetic flux density is used to describe the distance from the ferrite core an-

tenna to the measurement point shell. The magnetic fields can be described as shell-based 

magnetic flux density distribution patterns. Through regression analysis, magnetic field 

measurements are used to model specific magnetic fields [74, 83]. The generalized ex-

pression for describing a shell produced by a magnetic field generator in polar coordi-

nates is: 

 𝜌𝜌 = 𝑎𝑎(cos 2𝛼𝛼) + 𝑏𝑏, 𝑓𝑓𝑓𝑓𝑟𝑟 �𝑎𝑎 + 𝑏𝑏 > 𝐿𝐿 2⁄
|𝛼𝛼| ≤ 2𝜋𝜋   (2.15) 
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The radial distance 𝜌𝜌 is measured from the center of the ferrite core antenna with a length 

𝐿𝐿 at an angle 𝛼𝛼 to a point in space. The shell shape parameter 𝑎𝑎 and size parameter 𝑏𝑏 are 

determined from the measured magnetic field and defined as: 

 

 Shell(𝜌𝜌,𝛼𝛼|𝐵𝐵) =  �𝑎𝑎 = 𝑐𝑐𝑎𝑎𝐵𝐵−𝑑𝑑𝑎𝑎
𝑏𝑏 = 𝑐𝑐𝑏𝑏𝐵𝐵−𝑑𝑑𝑏𝑏

, 𝑓𝑓𝑓𝑓𝑟𝑟 𝐵𝐵 > 0 (2.16) 

 

The measured magnetic flux density 𝑩𝑩 increases with decreasing distance from the mag-

netic field generators to the magnetic field shell. The positive constants 𝑐𝑐𝑎𝑎, 𝑐𝑐𝑏𝑏, 𝑑𝑑𝑎𝑎, and 𝑑𝑑𝑏𝑏 

are dependent of the physical and electrical properties of the ferrite core generator. These 

constants are determined such that 0 < 𝑐𝑐𝑎𝑎 < 𝑐𝑐𝑏𝑏 and 0 < 𝑑𝑑𝑎𝑎 < 𝑑𝑑𝑏𝑏 < 1, and govern how 

the shell varies in shape and size with magnetic field.   

 

Further insight about the magnetic shell model can be gained by graphically examining 

these governing equations. The solid blue line in Figure 2.7 represents the magnetic shell 

shape that is described by Equations (2.11) and (2.12). The shell radius 𝜌𝜌 varies between 

the parameters 𝑎𝑎 + 𝑏𝑏 and  𝑏𝑏 − 𝑎𝑎, which can be represented circles (dotted lines). The sum 

of these parameters is represented by the circle with a radius value of 𝜌𝜌 at 0° and 180°. 

The difference of these parameters is represented by the circle with a radius value of 𝜌𝜌 at 

90°. At an angle of 45° the shell intersects a circle that has a radius equal to the parameter 

𝑏𝑏.  

 

By applying these graphical relationships, insight can be gained on how the shell model 

will behave. A large value of the parameter 𝑎𝑎 in relation to parameter 𝑏𝑏 will produce a 

more irregular shape. Conversely, a small value of the parameter 𝑎𝑎 in relation to parame-

ter 𝑏𝑏 will produce a shape resembling a circle. As distance from the generator increases 

the magnetic flux density decreases, and the parameter 𝑏𝑏 becomes large in comparison 

with parameter 𝑎𝑎. This creates a more uniform shell shape approximating a circle with in-

creasing distance from the generator. 
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Figure 2.7: Magnetic Flux Density Shell Model 

 

A shell-based model describing the magnetic fields can be used to improve the perfor-

mance of electromagnetic proximity detection systems. Multiple ferrite core antennas are 

used to produce the magnetic field around the machine. Each magnetic field generator 

has a magnetic shell that is dependent on the magnetic flux density. The intersection of 

these shells can be used to triangulate and track location. Advanced capabilities, such as 

selective machine shutdown, rely on accurate determination of worker positions around 

the machine. 

 

2.3.2. Transferable Shell-Based Model 

 

Electromagnetic proximity detection systems rely on consistent magnetic flux density 

distributions from multiple generators to function properly. During installation, proximity 

detection systems are calibrated and adjusted before being deployed. Magnetic flux den-

sity readings from each generator are used to identify zone boundaries. The overlapping 
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electromagnetic field distribution around the machine is used to define the different 

safety zones.   

 

Set-up and calibration of proximity detection systems in this way can affect and limit per-

formance. Manually calibrating based on the magnetic flux density readings is a time 

consuming process that can lead to zone detection errors. In addition, maneuvering a 

piece of equipment in an underground coal mine to correctly map the magnetic field dis-

tribution can be unsafe. By adjusting the output of the magnetic field generators to mod-

ify safety zone boundaries, the burden of calibration is reduced and performance im-

proved. 

 

As explained in the previous section, antennas have specific electromagnetic radiation 

patterns in the far field. The Biot-Savart law can be used to estimate magnetic flux den-

sity at a point that is the result of electric current applied to the coil [84]. The diagram 

shown in Figure 2.8 shows the relationship between the instantaneous magnetic flux den-

sity 𝑑𝑑𝐵𝐵 and constant electric current 𝐼𝐼 in a coil wire. An infinitesimal segment of the coil 

wire is represented by length 𝑑𝑑𝑑𝑑, and the distance to the instantaneous magnetic flux den-

sity 𝑑𝑑𝐵𝐵 is represented by the vector length 𝑟𝑟.  

 

Assuming electric charge does not accumulate anywhere in the coil, the cross product be-

tween 𝑑𝑑𝑑𝑑 and 𝑟𝑟 determines the magnitude and direction of the magnetic flux density 𝐵𝐵. 

This relationship can be expressed as: 

 

 

 𝑑𝑑𝑩𝑩(𝑟𝑟) =
𝜇𝜇0
4𝜋𝜋

𝐼𝐼 𝑑𝑑𝒍𝒍 × 𝒓𝒓�
|𝒓𝒓|2   (2.17) 
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Figure 2.8:  Magnetic Flux Density at a Point Near a Wire Coil with Applied Electric Current 

 

The integral form of Equation (2.17) can be expressed as:  

 

 𝑩𝑩 =  �
𝜇𝜇0
4𝜋𝜋

𝐼𝐼 𝑑𝑑𝒍𝒍 × 𝒓𝒓�
|𝒓𝒓|2 =

𝜇𝜇0𝐼𝐼
4𝜋𝜋

�
𝑑𝑑𝒍𝒍 × 𝒓𝒓�

|𝒓𝒓|2𝐿𝐿𝐿𝐿
  (2.18) 

 

Considering the constant electric current 𝐼𝐼 and taking the absolute value, Equation (2.18) 

can be rewritten as: 

 

 
𝐵𝐵
𝐼𝐼

=
|𝑩𝑩|
𝐼𝐼

=
𝜇𝜇0
4𝜋𝜋

��
𝑑𝑑𝒍𝒍 × 𝒓𝒓�

|𝒓𝒓|2𝐿𝐿
�   (2.19) 

 

The ratio between magnetic flux density and electric current in Equation (2.19) can be 

used to establish a relationship to predict the magnetic field. The magnitude of the mag-

netic flux density 𝐵𝐵 changes proportionally to the supplied electric current 𝐼𝐼. The integral 

in Equation (2.19) will always produce a scalar constant for a given point 𝑃𝑃 within the 

magnetic field. This suggests that a given ratio between 𝐵𝐵 and 𝐼𝐼 can be used to identify a 

unique point 𝑃𝑃 on a shell of constant magnetic flux density. 
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The ratio relationship between magnetic flux density and electric current can be incorpo-

rated into the magnetic shell model. A changed electric current will correspond to a 

changed magnetic shell. This concept can be expressed through a mapping transfer func-

tion as: 

 

 𝜏𝜏 =
𝐼𝐼𝑏𝑏
𝐼𝐼𝑐𝑐

 (2.20) 

 

The base electric current is represented by 𝐼𝐼𝑏𝑏, and the changed electric current is repre-

sented by 𝐼𝐼𝑐𝑐. The relationship in (2.20) can be incorporated into the shape and size shell- 

based modeling equation of (2.16) to find the changed magnetic flux density 𝐵𝐵𝑐𝑐: 

 

 Shell(𝜌𝜌,𝛼𝛼|𝐵𝐵) =  �𝑎𝑎 = 𝑐𝑐𝑎𝑎(𝜏𝜏𝐵𝐵𝑐𝑐)−𝑑𝑑𝑎𝑎
𝑏𝑏 = 𝑐𝑐𝑏𝑏(𝜏𝜏𝐵𝐵𝑐𝑐)−𝑑𝑑𝑏𝑏

, 𝑓𝑓𝑓𝑓𝑟𝑟 𝐵𝐵𝑐𝑐 > 0 (2.21) 

 

The ratio relationship 𝜏𝜏 in Equation (2.21) allows for the conversion of a current specified 

field-invariant model to a general transferable field-variant model. A magnetic field gen-

erator has a distribution pattern that is independent of the magnetic flux density and sup-

plied electric current. The relationship between 𝐵𝐵 and 𝐼𝐼 can be used to express the mag-

netic fields as nested shells, with surfaces representing a constant value. 

 

Using a transferable magnetic shell-based model has many advantages for electromag-

netic proximity detection systems. There is no need to obtain an additional shell based 

model for each generator with a supplied electric current. This can reduce the effort re-

quired to set up and calibrate electromagnetic proximity detection systems. Field adjust-

ments can be made by simply adjusting the electric current supplied to the magnetic field 

generators. A transferable model also lays the foundation for automatic magnetic field 

control against drift and environmental influences.      
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2.4:  Positions Triangulation 

 

Several technologies and methods can be used to determine the position of a person or 

object. The most commonly used localization systems for outdoor applications are satel-

lite navigation. For indoor and underground application, navigation and tracking systems 

are GPS denied. However, extensive research has been conducted during the last decade 

to develop accurate and reliable measurement of position in indoor environments [85-87]. 

Much of the research has been specifically targeted to applications involving existing 

wireless networks or for mobile devices such as smart phones [63, 88, 89]. Most of this 

technology is not applicable to the mining industry due to unique work conditions and 

safety requirements. 

 

Tracking systems have been developed and deployed in the mining industry to provide 

the location of personnel in an underground mine. There are a variety of technologies and 

techniques currently in use for underground tracking systems [90]. Some of the concepts 

and techniques used for miner tracking could be incorporated into hazard recognition and 

intervention systems. However, more research and information are needed for an inte-

grated and multipurpose systems approach. Underground workers near equipment can be 

tracked using electromagnetic proximity detection systems. By taking advantage of elec-

tromagnetic shell-based modeling, worker position around the machine can be deter-

mined.  

 

The shell-based magnetic model can be used to describe the electromagnetic fields pro-

duced by proximity detection system used in underground coal mines and determine 

worker location. A specific value of magnetic flux density can be related to a relative dis-

tance from a given generator. However, the intersection of two or more magnetic shells at 

the sensor location is the approximate position of the worker in two-dimensional space. 

Triangulated position provides system intelligence rather than simplified warning and 

stop zones.  
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The intersection of two constant magnetic flux density shells can be examined graph-

ically. A two-generator system is shown in Figure 2.9. The magnetic shells produced by 

Generators1 and 2 are represented by solid blue and green lines, respectfully. As also 

demonstrated in Figure 2.7, the dashed red lines (𝛼𝛼 = 45° and 𝛼𝛼 = 90°) represent the 

magnetic shell model constants, and the dotted circles represent the relationship between 

them. The intersection of the magnetic shells occur at 𝜌𝜌1 = 𝜌𝜌2 with the angles 𝛼𝛼1 and 𝛼𝛼2 

in their respective coordinate systems.   

 

 
Figure 2.9: Two-Magnetic Field Generator System Triangulation 

 

Analysis of a generator system can be used to develop a simplified version of proximity 

detection triangulation, but it has some limitations. Due to the spherical three-dimen-

sional nature of the magnetic field model, a third generator is needed to accurately deter-

mine worker position. This can complicate the data visualization and the process of deter-

mining and converging a solution [91]. The coordinate values of the intersection must 

also be mapped back to the machine coordinate system.  However, the simplified two-

generator system has some practical uses. It can be used to accurately study the influence 

of environmental factors and improve overall proximity system performance. Findings 

from a two generator system can be extended to systems with more than two magnetic 

field generators and will help increase system accuracy. 
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Chapter 3:  Experimental Electromagnetic System 

 

In this chapter, an experimental proximity detection system consisting of two magnetic 

field generators is developed and demonstrated. Although a two-generator system does 

not have practical application in an underground working environment, it can be used to 

study and improve electromagnetic proximity detection system performance. With an 

electromagnetic field generating system established, field measurements are used to de-

velop a shell-based model for each generator. Position triangulation, at the intersection of 

magnetic flux density magnetic shells, is evaluated against magnetic field measurements. 

The effects of temperature on magnetic field generators are examined, as is the pulsing of 

magnetic fields. The experimental system developed in this section will be used as the 

basis for development of a control system in the next chapter. 

 

3.1:  Experimental System Components and Layout 

A two-generator system was constructed in a laboratory environment to minimize the ef-

fects of environmental factors. Large metal objects can alter the magnetic field distribu-

tion produced by the generators. This was taken into account when determining the test 

location, which was free of large masses of metal. The general layout of the experimental 

two-generator system is shown in Figure 3.1. A large wood table (4.3 x 1.2 x 1.5 m) was 

constructed to lay out the coordinate systems and measure the electromagnetic field data. 

The ferrite-core antennas are positioned on the edge of the table, each 1 m from the cen-

terline. The magnetic fields are measured with a single IDR-325 Gauss meter (s/n: 0420). 

Surface temperatures of the ferrite-core magnetic field generators are measured using J-

type thermocouples bonded to the surface of the antenna. Two A.H. Systems Inc. model 

BCP-611 Current Transformer (CT) probes (s/n: 1304 and s/n: 1342) are used to measure 

electric current across each ferrite-core antenna. 
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     Figure 3.1: Experimental Two-Generator Electromagnetic Proximity Detection System 

 

Several subsystems and subcomponents are required to produce the magnetic fields. The 

amplifiers and impedance-matching circuits are located directly behind the wooden coor-

dinate measuring table in Figure 3.1. The signal generator and pre/post processing com-

puter is located to the left of the amplifiers. Each generator subsystems uses a separate 

Electronic & Innovation model 1020L power amplifier (s/n: 1040 and s/n: 2021) capable 

of producing 200 W of adjustable power. A circuit that matches the impedance of each 

generator is housed in 12V 36-Quart Kool Thermoelectric Cooler. The coolers protect 

and insulate the high-voltage components of the circuit and minimizes temperature fluc-

tuations.   

 

To achieve maximum magnetic field generating efficiency at the ferrite-core antenna, an 

impedance-matching transformer and capacitor bank is used. The impedance-matching 

circuit components for magnetic field generator 1 is shown in Figure 3.2 (a). These sepa-

rate sets of components are connected in series to the ferrite-core antennas, which pro-

duce the magnetic fields. The ferrite-core antenna for magnetic field generator 2 is shown 

in Figure 3.2 (b).  
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(a)       (b) 

Figure 3.2: Experimental Magnetic Field Generator components (a) Transformer and Capacitor Bank, and (b) 

Ferrite-Core Antenna 

 

Data input, output, and processing is monitored and controlled through several special-

ized computer boards. A Dell OptiPlex 760 computer (s/n: HM40SK1) with a 3 GHz pro-

cessor and 4 GB of RAM is used for data processing and visualization. A National Instru-

ments PXIe-1082 with a PXIe-8840 controller (s/n: 30E0600) and PXI-7854R analog in-

put/output board (s/n: 19B6BB3) is used to generate the 73 kHz signal to the power am-

plifiers. A National Instruments cDAQ-9178 (s/n: 17F9993) with NI-9211 (s/n: 

157B561) and NI-9223 (s/n: 1AD7DA6) input modules observe temperature and input 

voltages from the CT and thermocouples. Although the PXIe-1082 system is capable of 

acquiring this data, the cDAQ-9178 is used to improve computational efficiency and data 

visualization. A schematic of the both magnetic field generators is shown in Figure 3.3. A 

National Instruments SCB-68A shielded 68-Pin connector block (s/n: 1B929CC) was 

used to make all interface connections for the experimental system. Input and output in-

formation is processed and displayed through a custom-built National Instruments Lab-

VIEW Program (see Appendix A). 
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Figure 3.3: Schematic of Experimental Magnetic Field Generator Systems 

     

 

3.2:  Magnetic Field Generator Circuit Design 

 

The physical characteristics of the ferrite- core antennas determine the magnetic field 

generator circuit parameters. The ferrite- core antennas used in the experimental system 

have been repurposed from a commercial Strata Worldwide proximity detection system. 

These systems have an operating frequency of 73 kHz, and is are a design constraint of 

the experimental system. Each ferrite rod has a length of 19.1 cm, radius of 1.27 cm, and 

coil of 36 turns. The antennas are generically referred to as Antenna A (s/n: 6603), used 

for magnetic field Generator 1, and Antenna B (s/n: 6558), used in magnetic field Gener-

ator 2, to differentiate them from one another. 

 

The magnetic field generating circuits are designed separately and independently of one 

another, since each antenna has different electrical properties. The electronic circuit pa-

rameters are identified by investigating the electrical properties of each ferrite-core gen-

erator. An Agilent E4980A Precision LCR Meter (s/n: MY46207864) is used to examine 

the electrical resistance, inductance, and impedance for each antenna. The experimental 
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setup is shown in Figure 3.4 (a). Short 14 gauge copper lead wires are used to connect the 

LCR meter and antenna. The antenna properties from 20 Hz to 500 kHz were collected 

and inspected. The inductance between Antenna A (solid red line) and Antenna B (dotted 

blue line) is shown in Figure 3.4 (b). Values vary across the frequency spectrum of inter-

est. Similar results, showing distinct electrical properties for each antenna, are observed 

but not shown for brevity. Information about the electrical properties for each antenna is 

used to select the magnetic field generating circuit components.   

 

 
(a)       (b) 

Figure 3.4: Electrical Properties Testing Showing (a) LCR Meter Experimental Setup (a) and Resulting Induct-

ance of the Ferrite Core Antennas  

 

Independent circuits, with specific electronic components, are developed to produce sta-

ble and measureable magnetic fields based on the material properties of the ferrite-core 

antennas. Each circuit consists of resistive, inductive, and capacitive (RLC) elements 

connected in series that is tuned to the broadcasting frequency. Electrical resonance oc-

curs in an AC circuit when inductive and capacitive reactances are opposite and equal, 

canceling each other out. In a series resonant circuit, the resonant frequency is defined as: 

 

 2𝜋𝜋𝑓𝑓𝐿𝐿 =
1

2𝜋𝜋𝑓𝑓𝜋𝜋
 (3.1) 

 

where f is the resonant frequency, L is the inductance, and C is the capacitance of the series 

resonant circuit. With the resonant frequency identified at 73 kHz and the inductance of 
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each ferrite-core antenna determined experimentally, the capacitance required for each cir-

cuit is determined through Equation (3.1). Standard electrolytic capacitors values are con-

nected in parallel to achieve the total overall circuit capacitance required for resonance at 

the desired frequency. Each circuit also requires that sufficient electric current is supplied 

from one circuit component to another. 

 

An impedance match is needed for the high-efficiency electrical energy transfer from the 

power amplifiers to the ferrite-core antennas.  The impedance for a series RLC circuit is 

determined through the relationship: 

 

 𝑍𝑍 = �𝜋𝜋2 + �2𝜋𝜋𝑓𝑓𝐿𝐿 −
1

2𝜋𝜋𝑓𝑓𝜋𝜋
�
2

 (3.2) 

 

where R represents the total circuit resistance, and the other variables are the same as in 

Equation (3.1). The circuit resistance is determined experimentally with the capacitor 

bank and ferrite-core antenna connected in series to the LCR meter. The electric imped-

ance between each amplifier and antenna pair is matched through the addition of a circuit 

transformer. The type of transformer required for the circuit is determined through the re-

lationship between primary and secondary windings by: 

 

 𝑁𝑁 = �
𝑍𝑍𝑃𝑃
𝑍𝑍𝑆𝑆

 (3.3) 

  

The transformer turn ratio N represents the number of turns on the primary coil to turns 

on the secondary coil. The transformer input primary coil impedance is represented 

by 𝑍𝑍𝑃𝑃, and the output secondary coil impedance is denoted by 𝑍𝑍𝑆𝑆. A Pulse PA0815NL 

transformer, with a 12-turn primary winding and two turn secondary winding, is applied 

to both circuits to match the impedance between the amplifier and ferrite-core antenna. 
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Each magnetic field generating circuit contains similar components. A schematic layout 

of the circuit components for the experimental magnetic field Generator 1 is shown in 

Figure 3.5 (a), and the schematic layout of the circuit components for Generator 2 is 

shown in Figure 3.5 (b). The same transformer is used for both circuits, but capacitors of 

various values are used to achieve the desired circuit response.  

 

 
(a)       (b) 

Figure 3.5: Circuit Diagrams for (a) Magnetic Field Generator 1, and (b) Magnetic Field Generator 2 

 

A capacitor bank is designed for each circuit to ensure proper and efficient broadcasting 

of the magnetic fields. Table 3.1 shows the capacitor values used for the circuits dis-

played in Figure 3.5. The transformer and capacitors are arranged so that sufficient elec-

tric current flows through the ferrite-core antenna to produce the magnetic fields.  

 
Table 3.1: Capacitor Values for Magnetic Field Generator Circuits 

Capacitor Value 

C1 10,000 pF 

C2 7,500 pF 

C3 5,100 pF 

C4 2,200 pF 

C5 220 pF 

C6 30 pF 

 

Input and output signals must also be taken into consideration when designing the mag-

netic field generating circuit. Electric current across the ferrite-core antenna, measured by 
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the current transformers, does not affect the circuit design. However, the voltage supplied 

to each circuit is limited by the power amplifiers. An independent adjustable analog 73 

kHz sinusoid input, with an adjustable amplitude of 0.1 mVrms to 1 Vrms, is required for 

each circuit that is supplied by the software controlled signal generator.  

 

These system subcomponents form the field generators, which are capable of producing 

stable and consistent magnetic fields. If the broadcasting frequency is modified, the cir-

cuit parameters change and different circuit components would be needed. This may in 

turn influence the input signal amplitude required to produce a stable magnetic field. The 

magnetic fields produced by the generators are the foundation of the shell-based model 

that is used to triangulate position. 

 

3.3:  Electromagnetic Field Distribution and Modeling  

 

The generator circuits produce electromagnetic fields that are used to develop the shell 

based model. In addition, magnetic flux density data is collected to produce the shell 

based model. With a field invariant model established, the transferrable model is devel-

oped and demonstrated. Finally, position triangulation is investigated as a baseline for the 

control system implementation.  

 

3.3.1. Magnetic Field Data Collection 

 

Magnetic flux density measurements were collected at known positions around the mag-

netic field generators. Although the magnetic fields are three-dimensional in nature, only 

the 2-D case is considered here for simplicity. A diagram showing test setup and proce-

dure for collecting magnetic shell data is displayed in Figure 3.6. Enough AC electric 

current needs to be supplied to the ferrite-core antenna to ensure that a stable magnetic 

field is produced. Radial lines in 5.5° increments were drawn from the center of the an-

tenna for reference. The Gauss meter determines the intersections between the radial lines 
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and a constant value of magnetic flux density. Each measurement is manually recorded in 

Cartesian (𝐵𝐵, 𝑥𝑥,𝑦𝑦) and later converted to Polar (𝐵𝐵,𝜌𝜌,𝛼𝛼) coordinates.  

 
Figure 3.6: Schematic and Setup for 2-D magnetic flux density and location measurements 

 

The points on each shell represents the distribution of constant magnetic flux density. An 

example of the shell-based measurements is shown in Figure 3.7.  Measurements were 

collected to form a total of 16 constant magnetic flux density shells for each generator, 

which were placed at the origin. Each shell consists of 33 individual measurement points 

covering a total area of about 4 m2.  

 
Figure 3.7: Example of Magnetic Shells from Generator 1 Measurement Data 

 

Multiple data sets were collected to appropriately characterize the magnetic fields pro-

duced by each generator. The smallest shell for each generator is constructed at 300 mm 
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from the origin, and the largest is 1,100 mm from the origin. Each shell is incremented 50 

mm larger than the previous shell. The magnetic flux density values ranged from 7.8 mG 

to 378 mG for Generator 1, and 7.6 mG to 404 mG for Generator 2. The largest value of 

magnetic flux density is associated with the smallest size shell in the data set. Conversely, 

smaller values of magnetic flux density are associated with larger shell sizes. The data 

also shows the nonlinear relationship between magnetic flux density and shell size.  

 

The shell constants are determined through examination and analysis of the magnetic 

field data. The shell-based models for each generator are specific to the magnetic fields 

where the measurement data is collected. The magnetic field data collected for each gen-

erator determines the shell-model constants.  

 

3.3.2. Determination of Shell Based Model 

 

Multiple data sets are collected for each magnetic field generator that contain the infor-

mation needed to determine the shell model parameters. A number of data sets 𝑀𝑀 are 

constructed, each having a fixed magnetic flux density 𝐵𝐵 and a number of measurement 

points 𝑁𝑁. Each individual measurement point is represented as �𝐵𝐵𝑗𝑗, 𝜌𝜌𝑗𝑗𝑗𝑗 ,𝛼𝛼𝑗𝑗𝑗𝑗�, where 𝐵𝐵𝑗𝑗 is 

the constant magnetic flux density shell for data set 𝑗𝑗, 𝜌𝜌𝑗𝑗𝑗𝑗 is the 𝑠𝑠𝑡𝑡ℎ distance from the 

origin for data set 𝑗𝑗, and 𝛼𝛼𝑗𝑗𝑗𝑗 is the 𝑠𝑠𝑡𝑡ℎ angle from the origin for data set 𝑗𝑗. 

 

The shell size and shape parameters are determined by examination and data processing 

of each magnetic shell data set. A least squares regression is used to uncover the shell 

model parameters 𝑎𝑎 and 𝑏𝑏 from Equation (2.15). The squared error 𝜋𝜋 is defined as: 

 

 R =  �[𝜌𝜌𝑗𝑗 − (𝑎𝑎 cos(2𝛼𝛼𝑗𝑗) + 𝑏𝑏)]2, 𝑓𝑓𝑓𝑓𝑟𝑟  𝑠𝑠 = 1,2,3, … ,𝑁𝑁.  
𝑁𝑁

𝑗𝑗=1

 (3.4) 
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Minimizing the squared error in Equation (3.4), the optimum shell-size parameters 𝑎𝑎 and 

𝑏𝑏 can be expressed as: 
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𝑓𝑓𝑓𝑓𝑟𝑟  𝑠𝑠 = 1,2,3, … ,𝑁𝑁. 

(3.5) 

 

The size and shape coefficients are used to produce a shell function for the measured con-

stant magnetic flux density data sets. The measured data is then compared to the shell 

based model. An example comparison of the measured magnetic shell and shell based 

model is shown in Figure 3.8, where the magnetic field generator is placed at the origin. 

Two different constant value magnetic flux density shells are compared for magnetic 

field generator 2. The dotted red shell has a constant measured magnetic flux density of 

22 mG, while the dotted blue shell has a steady value of 108 mG. The shell-based model 

size and shape coefficients for the solid red line is a = 52.63 mm and b = 399.24 mm, and 

for the blue solid line is a = 78.94 mm and b = 675.62 mm, respectively. The model 

shows a good fit comparison to the measured data and can be used to uncover the shell-

based model constant coefficients.      
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Figure 3.8: Comparison of Magnetic Generator 2 Measured Shells (points) and Shell Based Models (solid lines) 

 

The shell-based model constant coefficients are determined by comparing the size and 

shape parameters against the magnetic flux density. The constant coefficients defined in 

Equation (2.16) are estimated through a regression fit with respect to 𝐵𝐵 for each magnetic 

field generator. The shell-based model constants 𝑐𝑐𝑎𝑎, 𝑑𝑑𝑎𝑎, 𝑐𝑐𝑏𝑏, and 𝑑𝑑𝑏𝑏 can then be deter-

mined through the relationship: 
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𝑓𝑓𝑓𝑓𝑟𝑟  𝑗𝑗 = 1,2,3, … ,𝑀𝑀. 

(3.6) 

 

The nonlinear relationship between shell size and magnetic flux density requires a large 

number of data sets to ensure accuracy. The 𝑀𝑀 = 16 data sets of constant magnetic flux 

density shells are used to produce the model contestants. An example of the model pa-

rameter accuracy is shown in Figure 3.9 for the Generator 1 shape constant a. The shell-

shape constants 𝑐𝑐𝑎𝑎 and 𝑑𝑑𝑎𝑎 are obtained from Equation (3.6) and used in Equation (2.16) 

to obtain the shell shape function. The 16 shape constants (red square) and shell equation 

(blue line) are compared in Figure 3.9. A similar relationship can be observed for the size 

constants 𝑐𝑐𝑏𝑏 and 𝑑𝑑𝑏𝑏 for Generator 1. These shell constants can now be used to describe 

an arbitrary magnetic field around the ferrite-core generator. The same procedure can be 

used to find the constant coefficients for magnetic field Generator 2.      
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Figure 3.9: Example of Shell Model Accuracy for Generator 1 Size Parameter 

 

The magnetic field data is used to produce an accurate invariant field distribution model 

for both experimental magnetic field generators. The model shape and size coefficient 

constants, used by Equation (2.15) to describe the magnetic fields, are shown in Table 

3.2. The electric current, kept the same for simplicity during model setup, is also dis-

played in the table.  

 
Table 3.2: Shell Based Model Parameters for Experimental Proximity Detection System 

Parameter Generator 1 Generator 2 

𝑐𝑐𝑎𝑎 158.14 mm 159.87 mm 

𝑑𝑑𝑎𝑎 0.231 mm 0.228 mm 

𝑐𝑐𝑏𝑏 1,886.1 mm 1,184.5 mm 

𝑑𝑑𝑏𝑏 0.331 mm 0.332 mm 

𝐼𝐼 2.835 A 

 

The model is only valid for a specific steady state applied electric current across the fer-

rite core antennas. If the electric current fluctuates in magnetic field generator circuits, 

then the shell based model loses accuracy. The transferable field variant model addresses 
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changes in magnetic field generator electric current, but only in the linear portion of the 

magnetic flux density and current relationship. Subsequently, this in can affect perfor-

mance of the proximity system to appropriately define safety zones and triangulate posi-

tion. 

 

3.4:  Experimental Position Triangulation 

 

The shell-based model can be used to triangulate position for a proximity detection sys-

tem. To determine the triangulated position of the sensor using the experimental system, 

each generator produces a magnetic field asynchronously. The same electric current is 

applied to the ferrite core antennas that was used during the shell model development. 

The sensor data is used to produce a constant magnetic flux density shell specific to each 

generator. The sensor is then found at the location of two intersecting magnetic shells. 

 

A common coordinate system is used to examine the performance of the experimental 

system. A triangular point grid of known locations is constructed between the two mag-

netic field generators. At each grid point measurement location, the Gauss Probe 

measures the magnetic flux density for each field generator independently. The intersec-

tions of the magnetic fields are compared to the actual grid location to assess perfor-

mance.        

 

The localization performance of the experimental two-generator system is quantified by 

comparing the calculated position and the actual grid point measurement location. An ex-

ample of this comparison is shown in Figure 3.10. The actual predetermined measure-

ment locations form a triangle (blue dots). This measurement pattern insures unique 

measurement locations with respect to both generators. The shell intersection locations 

are also displayed on the chart (red x marks) for comparison against actual measurement 

locations. The shell-based model accurately determines the sensor location. The shell 
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based magnetic model intersections have an average of 1.5% error difference from the 

known measurement locations.  

 

 
Figure 3.10: Comparison of Actual Measurement Locations (blue dot) and Shell-Based Triangulation (red x) 

 

Variation in electric current can have an adverse effect on the shell based model and di-

minishes triangulation accuracy. Electric current fluctuations can be caused by the non-

linear components of the power amplifier, environmental changes, and as changes in tem-

perature occur. Even simple changes, such as manually adjusting current during field cal-

ibration of deployed systems underground, can lead to degraded performance. To demon-

strate this phenomena, only the electric current supplied across ferrite-core antenna 1 is 

increased from 2.835 A to 3.181 A. The resulting magnetic shell intersections and meas-

urement locations are shown in Figure 3.11. The error between measurement locations 

(blue dots) and triangulated position of the magnetic field sensor has increased to an aver-

age of 8%. This error is expected to be greater for larger differences in supplied electric 

current between the magnetic field generators.   
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Figure 3.11: Shell Based Triangulation with Uncompensated Increase in Electric Current 

 

If no compensation is made, inconsistent current supplied to the ferrite-core antennas will 

result in an incorrect calculation of sensor locations. The magnetic field can be changed 

or adjusted to a desirable distribution by modifying electric current supplied to the mag-

netic field generating circuit. Within the linear region of the B and I relationship, the 

transferable shell-based field invariant mode can be applied. Figure 3.12 shows the re-

sults of the transferable model of Equation (2.21) being applied to the experimental sys-

tem. The electric current modification is compensated for, and the triangulation accuracy 

from the shell-based model is improved. An average percent error difference of 1.5% be-

tween the actual measurement locations and calculated locations is observed. 
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Figure 3.12: Application of the Transferrable Shell-Based Model to Triangulate Sensor Position 

 

While the field variant transferrable model can improve the position triangulation of 

proximity detection systems, it has some limitations. The magnetic flux density and elec-

tric current relationship is physical property unique to each field generator. Therefore, the 

transferrable model is best used to adjust proximity detection magnetic fields to environ-

mental influences that are reasonably constant.  Another limitation is the transferrable 

model requires a known sensor and measurement location to compensate the system. 

Variations of magnetic field generator electric current is better regulated by more tradi-

tion control system approaches.      

 

3.5:  Pulsed Magnetic Fields 

 

Commercial proximity detection systems used for underground mining equipment oper-

ate differently than the experimentally developed system. While the examples from the 

previous section show how the experimental system can be used to set up safety zones 

and triangulate position, it does not represent an important characteristic of how commer-

cial systems work. The presence of a magnetic field from one generator can influence the 
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size and shape of the magnetic field produced by another generator. To overcome this is-

sue, commercial systems use sequenced pulsed signals to prevent multiple magnetic field 

generators from distorting the safety zones around the machine.  

 

While the use of pulsed signals is a necessary feature of commercial proximity systems, it 

is not fully integrated into the experimental system. Using a pulsed signal would inhibit 

the development of a shell-based magnetic field model. Since the experimental system 

can be operated asynchronously to determine sensor location, the capability to pulse the 

magnetic field signal adds unnecessary complexity. However, use of a pulsed signal is an 

important component to consider for the examination of proximity detection system per-

formance. Environmental influences, such as temperature, need to be examined with a 

pulsed signal deployed.   

 

Characteristics of the pulsed magnetic generator signal are determined experimentally on 

a commercial proximity detection system. Figure 3.13 shows the experimental test setup 

on a proximity detection system installed on a Joy 14CM-9. Tests were conducted on the 

surface in an area free of environmental influences such as other equipment or machin-

ery. A single turn loop antenna was constructed and connected to a Tektronix RSA5100A 

Real-Time Signal Analyzer (s/n: XXXX). While these measurements do not relate the ex-

act electric current across the generator circuit, it does measure induced voltage that is 

proportional to magnetic flux density and provides valuable information about the signal.  

 

   
Figure 3.13:  Experimental Setup to Determine Pulsed Signal on a Commercial Proximity Detection System 
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Important signal characteristics such as rise time, pulse width, transient decay, and timing 

can be determined by examination of the test results. The plot shown in Figure 3.14 (a) 

displays one second of time data, which corresponds to five pulse peaks. Further inspec-

tion of the data, shown in Figure 3.14 (b), shows each peak contains two pulses. The du-

ration of each pulse is roughly 0.3 milliseconds, and each peak is approximately 0.2 sec-

onds apart. This information is used to create a pulsed signal for the experimental system     

 

   
(a)       (b) 

Figure 3.14: Commercial Proximity Detection System Magnetic Field Signal (a) over One Second and (b) Ex-

panded View of Two Pulse Peaks. 

 

The capability to produce pulsed magnetic fields was created for the experimental system 

based on the observed characteristics of the commercial system. The experimental system 

pulsed magnetic field output signal, as measured by the CT (blue line), is displayed in 

Figure 3.15. Also shown in Figure 3.15 is the input signal to the power amplifier (orange 

line) for comparison purposes. The timing and amplitude of the experimental system 

pulsed magnetic field signal closely resembles the characteristics of the commercial prox-

imity detection system magnetic field signal. However, there are some observed differ-

ences between the signals produced by the two systems. Some of differences can be at-

tributed to variability in the material properties of the ferrite-core generators. Others dis-

similarities are attributed to how the electronic components are configured.  
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Figure 3.15: Experimental Proximity Detection System Pulsed Magnetic Field Signal 

 

The ideal magnetic field signal is a rectangular pulse with equal positive and negative 

components. This ideal signal is difficult to achieve due to the electronic components 

used within magnetic field generating circuit. The experimental system has a significant 

transient decay response, as shown in Figure 3.15. Commercial proximity detection sys-

tems deploy a shunt to the power absorbing components that can reduce the transient re-

sponse of the signal, as displayed in Figure 3.14 (b). However, this approach has no ef-

fect on the rise time, which is observed to be uniform between the two systems. These 

characteristics are important to quantify and understand in relation to the development of 

a control system approach.   

 

3.6:  Effect of Temperature on Magnetic Field Generation 

 

There are a number of environmental influences that affect the size and shape of the mag-

netic fields produced by proximity detection system generators. The influences of many 

environmental factors have been studied for proximity detection systems used in under-

ground coal mines[79, 92]. Temperature within an underground mine environment can 
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fluctuate drastically [93]. However, it is not known how temperature variation affects the 

performance of proximity detection systems used in underground mines.  

 

The experimental system has been configured to examine the effect of temperature on the 

magnetic fields produced by the generators. The temperatures of magnetic field genera-

tors were monitored using Type J thermocouples bonded to the surface of the ferrite-core 

antennas. The magnetic field generator current was measured using a CT probe, as de-

scribed in the previous sections.  

 

The relationship between magnetic field generator current and temperature can vary sig-

nificantly. An example of this relationship is shown in Figure 3.16. An input signal of 

2.52 𝑉𝑉 at 73 kHz was supplied to the power amplifier, which corresponds to an initial 

value of 6.65 𝐴𝐴 across the magnetic field generator. The surface temperature of the fer-

rite-core antenna (blue line) follows the response of a first order system. The electric cur-

rent across the magnetic field generator (yellow line) initially increases and then decays 

uniformly until the temperature reaches steady state. The observed difference between the 

maximum and minimum current is 1.1 A, which is a significant variation across the mag-

netic field generating circuit.    

 

 
Figure 3.16: Generator 2 Surface Temperature vs Current  
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Variation between generator current and temperature can have a profound effect on the 

magnetic field produced. To demonstrate this, the magnetic field shells produced from 

the minimum and maximum electric current values, during the temperature rise to steady 

state in Figure 3.16, are displayed in Figure 3.17. The smaller shell (solid green line) cor-

responded to the minimum electric current observed at 5.7 𝐴𝐴 when the surface tempera-

ture reached steady state. The larger shell (dashed turquoise line) coincides with an elec-

tric current observed at 6.8 𝐴𝐴 when the system was initially turned on. The difference be-

tween the minimum electric current shell and the maximum electric current shell is at in-

tervals of 6.0% and 6.5%, depending on location. The same general observations are 

made for Generator 1, but are not shown here for brevity. 

 
Figure 3.17: Magnetic Shells Produced During Temperature for Generator 2 

 

Inconsistent magnetic fields can be problematic for electromagnetic based proximity de-

tection systems. While the example above focuses on temperature change that is a func-

tion of the ferrite-core antenna material properties, other environmental influences can 

also affect the temperature and performance of proximity detection systems. Ambient 

temperature in an underground coal mine is dependent on many factors, such as depth 

and ventilation air flow, and can influence the size and shape of the magnetic fields used 
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by an electromagnetic proximity detection system. Not only will this affect the perfor-

mance of traditional magnetic field-based systems, but also zone-based systems employ-

ing triangulation and selective shutdown logic. 

 

Examining the effect of cooling to an ambient temperature, while using a pulsed signal, 

will further demonstrate the effects of environmental influences on the magnetic field 

generators. This is a more realistic scenario of what underground commercial proximity 

detection will experience, while using the experimental system in a laboratory environ-

ment. Again, a 2.52 𝑉𝑉 73 kHz sinusoidal signal was supplied to the power amplifier. Us-

ing the pulsed signal developed in the previous section, the ferrite-core antenna in Gener-

ator 2 was brought to a constant and steady surface temperature 180 °F. A 36-Quart Kool 

thermoelectric cooler (same used for the capacitor banks) kept the ambient temperature 

constant at 35 °F. Once the ferrite-core antenna reached a constant surface temperature, it 

was placed in the cooler to observe the electric current and temperature changes.   

 

As with the previous case shown in Figure 3.16, significant changes are observed be-

tween electric current across the magnetic field generator and the surface temperature of 

the ferrite-core generator. The results of using a pulsed magnetic field signal while cool-

ing to a constant outside ambient temperature is shown in Figure 3.18. The ferrite-core 

antenna of magnetic field Generator 2 (blue dashed line) exponentially decays to a con-

stant surface temperature. The electric current across the magnetic field generator (orange 

line) quickly increases to compensate for the change in temperature and then remains uni-

form until the temperature reaches steady state. The observed difference between the 

maximum and minimum current is again 1.1 A. This difference will introduce errors be-

tween the magnetic field expected and the magnetic field produced by the magnetic field 

generator.  
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Figure 3.18: Temperature Change of Generator 2 using a Pulsed Magnetic Field Signal 

 

Changes in temperature can influence the electric current across the magnetic field gener-

ators used in underground proximity detection systems. These influences can affect the 

performance of proximity systems by introducing inconsistent magnetic fields. If the gen-

erator is not producing a strong enough magnetic field, the safety zones might not pro-

vide adequate protection. Similarly, systems relying on position triangulation and intelli-

gent machine shutdown will not function properly. Field adjustments can be made to 

compensate, but underground mine temperature fluctuates between work shifts and day to 

day. These errors can, however be overcome through the implementation of a control sys-

tem to limit electric current fluctuations.    



www.manaraa.com

 

 

80 

Chapter 4:  Control System Design and Simulation 

 

This chapter will focus on the development of a control system that governs input to the 

experimental electromagnetic field generators. The system components and architecture 

are defined to develop the proposed closed-loop system. Analytic approximations of the 

electromagnetic field generating circuits are established to model the behavior of the sys-

tem. A controller is developed through simulation that provides an improved signal to the 

electromagnetic field generating circuits. Design parameters for the proximity system are 

further examined through simulation. The simulated response of the controlled system is 

compared and contrasted to the simulated open-loop system. The controller developed in 

this chapter will be the basis for the control system to be applied on the experimental 

electromagnetic system.  

 

4.1:  Electromagnetic Proximity System Numerical Model 

 

A numerical model is developed of the experimental two-generator system from the pre-

vious chapter. The governing equations describing the magnetic field generators are de-

termined by examining the electronic circuit components. The schematic shown in Figure 

4.1 describes the general electronic component layout used for each magnetic field gener-

ator circuit. The diagram contains the simplified circuit elements that define the generator 

components used to produce each magnetic field. The impedance matching transformer 

elements of the experimental systems are denoted by the subscript T. The magnetic field 

generating components of the ferrite core generator is designated by the subscript G. 
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Figure 4.1: Magnetic Field Generator Circuit Diagram 

 

To determine the input/output relationship of the magnetic field generating circuit, the 

voltage drop across each element is expressed as:      

 

 

 

where 𝐼𝐼 and 𝑉𝑉𝑗𝑗 represent the circuit current and supplied voltage, respectively. The con-

stant gain value, 𝐾𝐾, is supplied by the power amplifiers. The circuit’s transformer resis-

tive and inductive elements are represented by 𝜋𝜋𝑇𝑇 and 𝐿𝐿𝑇𝑇, respectively. The compo-

nents 𝜋𝜋𝐺𝐺 , 𝜋𝜋𝐺𝐺, and 𝐿𝐿𝐺𝐺  denote the resistive, capacitive, and inductive elements of the mag-

netic field generating circuit. The ratio of primary to secondary transformer windings is 

represented by 𝑁𝑁, which is 6 for both circuits. Equation (4.1) represents a second-order 

homogenous linear differential equation with constant coefficients         

 

Rearranging Equation (4.1) and converting to the frequency domain yields:  

 

 
𝐼𝐼(𝑠𝑠)
𝑉𝑉𝑠𝑠(𝑠𝑠) =

𝐾𝐾

𝜋𝜋𝑇𝑇 + 𝒔𝒔𝐿𝐿𝑇𝑇 + 𝑁𝑁2𝜋𝜋𝐺𝐺 + 𝑁𝑁2
𝒔𝒔𝜋𝜋� + 𝒔𝒔𝑁𝑁2𝐿𝐿𝐺𝐺

 (4.2) 

 

Further simplification and rearranging of Equation (4.2) produces the transfer function:  

 

 𝜋𝜋𝑇𝑇𝑠𝑠(𝑑𝑑) + 𝐿𝐿𝑇𝑇
𝑑𝑑𝑠𝑠(𝑑𝑑)
𝑑𝑑𝑑𝑑

+ 𝑁𝑁2𝜋𝜋𝐺𝐺𝑠𝑠(𝑑𝑑) +
𝑁𝑁2

𝜋𝜋𝐺𝐺
� 𝑠𝑠(𝑑𝑑)𝑑𝑑𝑑𝑑 + 𝑁𝑁2𝐿𝐿𝐺𝐺

𝑑𝑑𝑠𝑠(𝑑𝑑)
𝑑𝑑𝑑𝑑

= 𝐾𝐾𝑉𝑉𝑗𝑗(𝑑𝑑) (4.1) 
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𝐼𝐼(𝑠𝑠)
𝑉𝑉𝑠𝑠(𝑠𝑠) =

𝐾𝐾𝒔𝒔

𝒔𝒔2(𝐿𝐿𝑇𝑇 + 𝑁𝑁2𝐿𝐿𝐺𝐺) + 𝒔𝒔(𝜋𝜋𝑇𝑇 + 𝑁𝑁2𝜋𝜋𝐺𝐺) + 𝑁𝑁2
𝜋𝜋�

 (4.3) 

 

Several important characteristics of the magnetic field generating circuit can be deter-

mined by examining the system’s transfer function. The transfer function displayed in 

Equation (4.3) describes the behavior and response of a series resonant RLC circuit. De-

termination of the system poles reveals three distinct cases. If the characteristic equation 

contains two different real poles, then the system will be overdamped. The system will be 

critically damped if the poles are real and repeated. Finally, if the poles are complex, then 

the system will be underdamped. The numerator of Equation (4.3) displays a zero at the 

origin, which will also affect the steady state response.  

 

The resistive, capacitive, and inductive circuit components were determined experimen-

tally, as described in the previous chapter. The measured values for each magnetic field 

generating circuit are displayed in Table 4.1. These values are incorporated into the trans-

fer function in Equation (4.3) to obtain the numerical representation of each magnetic 

field generating circuit.   

 
Table 4.1: Experimentally Measured Circuit Component Values 

Variable Generator 1 Value Generator 2 Value 

𝜋𝜋𝑇𝑇  0.2179 Ω 

𝐿𝐿𝑇𝑇 1.8177 x 10-6 H 

K 52.6 51.6 

𝜋𝜋𝐺𝐺  0.6395 Ω 0.7589 Ω 

𝜋𝜋𝐺𝐺 2.7820 x 10-8 F 2.7912 x 10-8 F 

𝐿𝐿𝐺𝐺  1.7011 x 10-6 H 1.6890 x 10-6 H 
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The damping ratio and undamped natural frequency are determined by values of the cir-

cuit components, and establish which response the system will exhibit. The system damp-

ing is determined through the values obtained in Table 4.1 and the general RLC series 

circuit relationship: 

 

 𝜁𝜁 =  
𝜋𝜋
2
�𝜋𝜋
𝐿𝐿

 (4.4) 

 

where the variables in Equation (4.4) represent the total values measured for each circuit 

component. The undamped natural frequency is a design criteria and the sinusoidal input 

to the system. Examination of the poles in Equation (4.1) with the values inserted from 

Table 4.1 reveals that both systems have complex real roots and display an underdamped 

transient response. 

 

The numerical model transfer functions are compared to the experimental system devel-

oped in the previous chapter. A Matlab computer program was written to model Equation 

(4.4) and simulate the magnetic field generating circuits (See Appendix B). A frequency 

response is generated by the experimental system and then compared to the numerical 

frequency response function (FRF). The results of the experimental frequency response 

are shown in Figure 4.2 (a), and the results of the numerical FRF are shown in Figure 4.2 

(b). There is close agreement between the measurement and simulation of magnetic field 

Generator 1 (solid blue line) and Generator 2 (dashed green line). The resonant peak and 

phase shift at 73 kHz is recognized for both the experimental and numerical systems. 

Slight variation observed in the experimental frequency response of Generator 2 is due to 

the material properties of the ferrite-core antenna. The numerical approximation of the 

experimental magnetic field generators is the basis for the development a control system 

approach.  
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(a)       (b) 

Figure 4.2: Frequency Response of Magnetic Field Generator (a) Experimental System (b) Numerical Model 

 

An important parameter that influences the response of the circuit can be derived from 

the magnitude of the frequency response at resonance. The Quality factor, Q, is a meas-

ure of the resonant peak “sharpness” at the driving frequency. The maximum energy 

stored in the circuit to the energy dissipated during each cycle of oscillation is related to 

Q, and is defined as: 

 

 𝑄𝑄 =
1
𝜋𝜋
�𝐿𝐿
𝜋𝜋

 (4.5) 

 

Equation (4.5) is closely related to the circuit damping ratio and natural frequency. The 

ability to reject any frequencies outside of the resonant peak bandwidth is determined by 

the Quality factor. A more selective magnetic field generating circuit will have a nar-

rower bandwidth whereas a less selective circuit will have a wider bandwidth. In addi-

tion, the time required for a series resonant circuit to reach full amplitude takes approxi-

mately Q cycles.     

 

To further validate the numerical model, the system response to a pulsed sinusoidal input 

is examined. An input signal similar to the one defined in Section 3.5 is used to simulate 

the numerical model. The results of the numerical simulation are displayed in Figure 4.3 
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for magnetic field generator 1. The output signal (blue line) represents a numerical ap-

proximation of the signal measured by the CT in the experimental system. The input sig-

nal (organ line) represents a numerical approximation to the signal being sent to the 

power amplify. The numeric results shown in Figure 4.3 closely resemble the experi-

mental magnetic field pulses displayed in Figure 3.15. 

       

 
Figure 4.3: Simulated Pulsed Magnetic Field Signal for Generator 1 

 

System response to a pulsed sinusoidal input is an important consideration when develop-

ing and evaluating control system strategies. However, other input types provide a better 

prediction of global system stability and performance. The overall control system perfor-

mance will be evaluated on the ability to reduce rise time and settling time of the circuit 

response to the 73 kHz sinusoidal input. With the development and verification of the 

magnetic field generator numeric models, simulations can be used to develop the control 

system. 
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4.2:  Control System Development  

 

The input/output relationship developed in the previous section determines how the mag-

netic field generating system will behave and the desired performance required of the 

controller. The system damping determines which response will be observed 

(overdamped, underdamped, or critically damped), with the resonant frequency held con-

stant. Several important transient characteristics can be determined by examining the unit 

step response. The overall design criteria for the controller is to reduce the settling time, 

preserve or slightly improve the peak response, and maintain an acceptable quality factor. 

The natural frequency of the system must also match the input signal frequency of 73 

kHz, so the sufficient current is supplied to the ferrite-core antenna.      

 

The control system is developed by first considering the unit step response of the mag-

netic field generating circuit. Figure 4.4 shows the unit step response of the uncompen-

sated system for magnetic field generator one. Due to the numerator of Equation (4.3), 

the system response to a unit step input is zero at steady state. After the peak amplitude is 

achieved, the system oscillations decay exponentially to a final value of zero. The circuit 

designed for the second magnetic field generator demonstrates identical characteristics, 

but is not shown for brevity.   
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Figure 4.4: Simulated Unit Step Response of Generator Circuit 1 

 

The magnetic field generating series resonant circuit requires sufficient energy input 

without DC bias offset, which can saturate the inductors. However, the long settling time 

in relation to the input sine wave pulse is responsible for the undesirable transient re-

sponse shown in Figure 4.3. While the uncompensated system can accurately track refer-

ence input, it also has poor disturbance rejection as demonstrated by the temperature vari-

ation in Section 3.6.  

 

A feedback controller architecture is examined to improve the magnetic field generating 

circuit system performance. Figure 4.5 shows a block diagram schematic of the feedback 

control system and is used to develop the closed-loop transfer functions. The reference 

input is represented by R(s), and the system output is represented by Y(s). The generator 

circuit disturbance corresponds to W(s), while V relates the current probe sensor noise. 
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Figure 4.5: Control System Architecture 

 

These relationships are used to analyze the control system architecture and develop the 

basic control equations for the feedback system. The closed-looped transfer function for 

the magnetic field generating feedback system is defined by: 

 

 
𝑌𝑌(𝑠𝑠)
𝜋𝜋(𝑠𝑠)

=
𝐷𝐷𝑐𝑐𝑐𝑐(𝑠𝑠)𝐺𝐺(𝑠𝑠)

1 + 𝐷𝐷𝑐𝑐𝑐𝑐(𝑠𝑠)𝐺𝐺(𝑠𝑠)
 (4.6) 

 

The poles and zeroes of the closed-loop transfer function are examined in relation to tran-

sient response characteristics. The Root locus plot of the circuit transfer function is 

shown in Figure 4.6. A polar grid with lines of constant radial damping and angular natu-

ral frequency is used to determine proportional gain values that could improve system 

performance. The infinite gain relationship between the system complex poles (blue x 

marks) and zero (blue circle) is displayed, and can be used to infer dynamic properties of 

the closed-loop system. The complex conjugate poles are shown on the Left Hand Plane 

(LHP) with the numerator zero at the origin. The pole/zero placement determines the 

Root Locus path, where increasing gain follows the 73 kHz radius until a damping factor 

of unity is reached.  
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Figure 4.6: Root Locus of Magnetic Field Generating Circuit 

 

Several proportional gain values are identified that could improve the performance of the 

magnetic field generating circuit. To evaluate these values, the unit step and frequency 

response is examined. Figure 4.7 shows the unit step response (a) and frequency response 

(b) with several different values of proportional gain. Less than unity (blue line), unity 

(green line), and greater than unity (red line) values of proportional gain are considered.      

 

 
Figure 4.7: Unit Step (a) and Frequency Response (b) of Closed-Loop System with Proportional Gains   
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Several observations can be made by examining the step and frequency response simula-

tions using different proportional gain values. The gain values and resulting time re-

sponse characteristics, as well as the frequency domain Quality Factor, are displayed in 

Table 4.2. As the settling time, 𝑇𝑇𝑠𝑠, decreases, the peak response, 𝑃𝑃𝑘𝑘, increases. However, 

this improvement in performance comes at a cost of the band-pass filter quality factor, Q. 

As the quality factor is decreased, the “sharpness” of the resonant peak will become 

broader. This will result in less-efficient energy transfer between the amplifier and fer-

rite-core antenna, and potentially allow noise to enter the system.  

 

Table 4.2: Proportional Gain Closed-Loop Performance Characteristics 

Gain, K Quality Factor, Q Settling Time, 𝑇𝑇𝑠𝑠  Peak Response, Pk 

Open-Loop 121.13 1.731 ms 0.183 V 

0.5 9.83  0.168 ms 0.086 V  

1 5.12 0.087 ms 0.161 V 

1.5 3.46 0.059 ms 0.226 V 

 

By implementing feedback control, the closed-loop system error is less sensitive to plant 

gain variation than the open-loop system. However, further inspection of the closed-loop 

transfer function reveals important information about overall system error. Since the sys-

tem is type 0, the circuit output has a constant steady state error for a unit step input refer-

ence tracking. Furthermore, the system is also type zero for disturbance rejection and will 

also have a constant steady state error for a unit step input. Reference tracking and dis-

turbance rejection can be improved by adding an integral term to the proportional con-

troller.  

 

A proportional integral (PI) controller is developed to improve the performance and re-

sponse of the magnetic field generating circuits. Using a proportional controller produces 

an output that is commensurate with the system error. Adding an integral control to the 

proportional controller integrates the error over a time period and reduces the steady state 
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error. A derivative term for the controller is not needed due to the system stability and re-

quired rise time response to the reference input. The PI controller is implemented of the 

form: 

 

 𝐷𝐷𝑐𝑐𝑐𝑐(𝑠𝑠) = 𝐾𝐾𝑝𝑝 +
𝐾𝐾𝑗𝑗
𝑠𝑠

 4.7 

 

Where 𝐾𝐾𝑝𝑝 is the proportional gain tuning parameter, and 𝐾𝐾𝑗𝑗 is the integral gain tuning pa-

rameter. The controller gain values are determined by examining the Root locus infinite 

gain relationship of the closed-loop system.   

 

To determine appropriate gain values, the Root locus of the PI controller and magnetic 

field generating plant is examined. The Root locus of the controller and plant is shown in 

Figure 4.8. The real pole of the PI controller is placed close to the origin of the real/imag-

inary axis, at -50, to maintain the circuit natural frequency. The overall Root locus shape 

with the PI controller is similar to the Root locus of the proportional only controller 

shown in Figure 4.6. However, reference tracking and disturbance rejection have been 

improved since the closed-loop system is type 1 with respect to error. Root locus gain 

values are determined based on the system damping, which is directly related to the Qual-

ity factor, and transient response.   
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Figure 4.8: Root Locus of PI Controller and Magnetic Field Generating Circuit 

 

The unit step and frequency response is examined to evaluate the performance of the PI 

controller. The closed-loop response with PI control for a unit step input is shown in Fig-

ure 4.9 (a), and closed-loop frequency response with PI control is shown in Figure 4.9 

(b). The controller provides appropriate peak response and quickly arrives at steady state 

in response to the unit step input compared to the open-loop system. The frequency re-

sponse displays a resonant peak with a narrow passband at 73 kHz. The system frequency 

and unit step response gives an approximation to how the system will respond to other 

reference input signals.       
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(a)      (b) 

Figure 4.9: Unit Step (a) and Frequency Response (b) of Closed-Loop System with PI Controller 

 

4.3:  Control System Simulation  

 

This section explores the simulation and application of the feedback controller with a si-

nusoidal reference input. As demonstrated in Section 3.5, proximity detection systems 

rely on synchronized pulsed sinusoidal input signals to generate magnetic fields. The 

feedback system with a proportional and a PI controller is simulated using a 73 kHz 

pulsed sine wave similar to the one that is measured experimentally.   

 

The proportional gain controller provides an output signal that is the difference between 

the set point and the process variable. To provide easy comparison and analysis, the am-

plitude for the simulated input sine wave is set to one. The closed-loop system response 

to a sinusoidal burst input using proportional gain is shown in Figure 4.10. The input sig-

nal set point is represented by the green-dashed line. The output is shown in blue, and the 

error signal is displayed in red. 

 

Using a proportional gain controller, the magnetic field generating circuit response is 

greatly improved. The output tracks the reference input amplitude, and the transient re-

sponse is improved. However, there is still significant system error. If more proportional 
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gain is used to compensate for the steady state error overshoot becomes a complication. 

The system error is reduced by incorporating an integral term to the control.         

 

 
Figure 4.10: Closed-Loop Proportional Controller Response to the Sinusoidal Burst Input 

 

The advantages of integral control, with reduced steady state error, and proportional con-

trol, with increased speed of the transient response, is combined in the PI controller. The 

system response to a sinusoidal burst input using PI control is shown in Figure 4.11. 

Again, the set point is represented the green-dashed line, the system output is shown in 

blue, and the error signal is displayed in red.  

 

The addition of the integral control has further improved the response of the magnetic 

field generating circuit. The error, when comparing proportional control in Figure 4.10 to 

PI control Figure 4.11, has been reduced. Further increasing PI gain also increases system 

damping and shifts the circuit natural frequency away from 73 kHz. It will also introduce 

noise into the system since the quality factor is reduced with increased damping. These 

influences will become factors when experimentally implementing the controller.   
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Figure 4.11: Closed-Loop PI Controller Response to the Sinusoidal Burst Input 
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Chapter 5:  Experimental Demonstration of Feedback Control 

 

This chapter will explore the experimental demonstration of a feedback controller that 

improves the consistency of the magnetic fields used in proximity detection systems. An 

overview is given of the experimental system implementation. System limitation and im-

plications are discussed. The feedback control system is demonstrated with both propor-

tional and PI controllers. Performance is compared and contrasted to the uncompensated 

system. Finally, the controller performance is examined in relation to temperature fluctu-

ations. The control system improves the transient magnetic field signal response and re-

duces the influence of disturbances.      

 

5.1:  Experimental Feedback System Implementation 

 

To establish the feedback path, several system connections are made. The system layout 

is shown in Figure 5.1 to illustrate the feedback connection. The electric current across 

the ferrite-core antenna of the magnetic field generating circuit is the feedback system 

output. This signal is measured by the CT and coupled to the PXI controller analog in-

put/output board. The other system connections are similar to the open-loop configuration 

shown in Figure 3.3. These signals are connected to the host computer for data analysis 

and post processing.  

 

In order to implement the feedback system, Field Programmable Gate Arrays (FPGA) are 

used in the controller hardware. Application-specific integrated circuits and processor-

based systems components are combined in FPGA reprogrammable silicon chips [94, 

95]. Different processing operations do not have to compete for the same resources since 

FPGA have a parallel processing structure. However, for control system applications, 

processing speed is still limited by the A/D measurement signal sampling and D/A con-
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version of the control signal. The same function can be implemented in an FPGA and ex-

ecuted in hardware rather than executing the function in software. This gives the experi-

mental system the ability to both acquire and produce signals with the same hardware.  

 

 
Figure 5.1: Schematic of Experimental Feedback System 

 

Although the experimental system has enhanced capabilities to process the control algo-

rithm, other considerations must be taken into account. The control system hardware 

should, in general, be capable of acquiring and producing data at least 10 times the circuit 

resonant frequency. The controller processor has a 2.7 GHz processor with a maximum 

bandwidth of 8 GB/s. However, the system is limited by the sampling rate of the analog 

input/output board at 1 MS/s. Significant delay between the feedback and control signal 

will cause the system to be unstable. Rather than use the unfiltered AC signal from CT, 

an RMS signal resolves some of the signal sampling concerns and can be implemented 

digitally.  

 

The experimental feedback controller is realized using LabVIEW programming with 

FPGA capabilities.  The host controller software program is shown in Appendix A. The 

feedback controller hardware calls for a minimum number of CPU clock ticks to acquire, 
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process, and produce the signal data. Data are passed through loops for each function us-

ing First-In-First-Out (FIFO) data collection and assignment functions in LavVIEW.  

Each loop processes one point at a time. In order to maintain consistent timing for both 

input and output signals, separate software loops were programmed for each software 

function  

 

Another computer program is developed to monitor the experimental magnetic field gen-

erating system using LabVIEW software programming language. These programs are 

shown in Appendix A. The host processor that acquires and produces the magnetic field 

signal utilizes FPGA programming to maximize computational efficiency. However, this 

restricts the ability to observe both the magnetic field and temperature signals. The moni-

toring program examines all control system inputs and outputs, and also the temperature 

of the ferrite-core generators.  

 

5.2:  Experimental Feedback System Results  

 

The performance of the experimental feedback electromagnetic field generating system is 

evaluated on its ability to improve the circuit disturbance rejection and transient response. 

The open-loop system is susceptible to internal and external temperature changes, which 

causes electric current drift from the set point. In Addition, the open-loop system has a 

poor transient response with a gradual rise time and long settling time decay. This re-

duces the time that a stable and constant magnetic field can be generated. A controller is 

implemented in the feedback loop to mitigate these issues and concerns. The performance 

is compared and contrasted against one another, and also limitations.  

 

Proportional control produces a signal that corresponds to the electric current tracking er-

ror. It generally reduces rise time, increases overshoot, and reduces steady-state error. 

The feedback system output current across the ferrite-core antenna with unity gain is 



www.manaraa.com

 

 

99 

shown Figure 5.2. The controlled signal (light blue) is overlay on the open-loop uncon-

trolled signal (orange). Both signals were given the same initial set point of 1 Vrms. The 

poor initial and transient response is improved with the unity feedback control, but an 

offset error has been introduced.  

 

 
Figure 5.2: Magnetic Field Signal with Unity Gain Feedback 

 

To reduce the offset error, the feedback proportional gain is increased. The results of in-

creasing the proportional gain is shown in Figure 5.3. The steady state error difference 

between the open-loop (orange) and controlled (light blue) is reduced but not eliminated. 

Increasing the proportional gain also has the undesirable effect of introducing overshoot. 

To achieve better controller performance, an integral term is added to the feedback loop. 
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Figure 5.3: Magnetic Field Signal with Increased Proportional Gain Feedback 

 

Integral control decreases the rise time, increases both the overshoot and the settling time, 

and eliminates the steady-state error. Combined with proportional gain, the PI controller 

provides acceptable transient response and reduces circuit steady state offset error. Figure 

5.4 shows the experimental magnetic field signal with PI control applied. For this experi-

ment, a set point of 2 Vrms was used to demonstrate that different values can be chosen.    

The circuit response of the uncompensated system (orange) is improved by the compen-

sated (light blue) feedback system with PI control. The CT amplitude output across the 

ferrite-core antenna quickly reaches the set point and rapidly decays to zero, meeting all 

initial design requirements.   

 

Another way to evaluate the performance of the controller is to examine the RMS signals 

of the feedback system. Figure 5.5 shows the PI controller RMS input signal (blue line), 

controller output signal (yellow line), and set point (black-dashed line). The controller 

tracks the reference input of 1 Vrms and provides an immediate response at the beginning 

and end of the sinusoidal burst signal.     
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Figure 5.4: Magnetic Field Signal with PI control 

 

 

 
Figure 5.5: RMS Magnetic Field Signal with PI control 

 

These results establish that PI control, when introduced into the feedback loop, can pro-

duce a more efficient and stable magnetic field signal for proximity detection systems. 

The magnetic field signal of the open-loop system has a relatively slow rise time and 
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gradual exponential decay. By introducing PI control in the feedback loop, these transient 

characteristics are improved so that a consistent magnetic field signal is transmitted. A 

consistent and stable magnetic field signal improves the accuracy and performance of 

electromagnetic proximity detection systems.      

 

5.3:  Experimental System Disturbance Rejection 

 

As discussed in Chapter 3, changes in temperature can dramatically affect the perfor-

mance of the magnetic field generating circuit used in electromagnetic proximity detec-

tion systems. The feedback system should eliminate electric current disturbances across 

the ferrite-core antennas caused by temperature fluctuations. The ability of the feedback 

system to reject temperature disturbance is assessed by introducing internal and external 

temperature changes to the ferrite-core antenna. 

 

When electromagnetic proximity detection systems are powered on, the ferrite-core an-

tenna surface has a first-order temperature rise to a steady state. As demonstrated in Fig-

ure 3.16, this temperature rise can cause the electric current across the ferrite-core an-

tenna to change significantly. The feedback system eliminates the electric current fluctua-

tions caused by startup temperature rise. Figure 5.6 shows the ferrite-core antenna electric 

current (orange line) and temperature (blue line) during startup for magnetic field genera-

tor 1. During the temperature rise to steady state, the feedback system maintains the elec-

tric current set-point (black-dashed line).       
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Figure 5.6: Generator 1 Surface Temperature vs Current with Feedback Control 

 

The feedback system must also be able to eliminate external temperature influences that 

cause the electric current to drift from the initial set-point. To demonstrate the ability of 

the feedback system to reject external temperature influences, the ferrite-core antenna 

was heated to a high surface temperature then placed in an environmentally controlled 

cooler. Similar to the test shown in Figure 3.16 with the open-loop system, a 36-Quart 

Kool thermoelectric cooler was used to change the ambient temperature. Figure 5.7 

shows the ferrite-core surface temperature (blue line) decay and resulting electric current 

(orange line). The feedback system maintains the electric current set-point (black-dashed 

line) during the temperature decay to ambient steady state.  
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Figure 5.7: Cooling of Generator 2 to Ambient Temperature with Feedback Control 

 

These results demonstrate that incorporating a feedback system into an electromagnetic 

proximity detection system can reduce the influences of internal and external temperature 

changes. Temperatures can fluctuate in an underground mine and cause the magnetic 

fields used in proximity detection systems to be inconsistent. By incorporating a feedback 

system into the magnetic field generating circuit, the magnetic fields stay uniform and 

constant despite temperature irregularities throughout an underground mine. This reduces 

worker position triangulation error and the occurrence of false alarms.   
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Chapter 6:  Summary and Conclusions 

 

6.1:  Summary 

 

Much has been done to improve the health and safety of mine workers. However, mine 

workers are still exposed to hazards and are considered one of the most dangerous occu-

pations in industry. Machine related accidents and injuries continue to be a safety con-

cern, particularly in underground coal mines. Striking and pinning hazards, due to the 

confined work environment and use of large machinery, continue to cause injuries and fa-

talities. 

 

Several technologies are available to reduce machine related accidents and injuries within 

the mining industry. Remote sensing and proximity detection technologies developed for 

other industries have transitioned into the mining industry. However, technologies such 

as radar, GPS based localization, and thermal imaging are not conducive to the applica-

tion of underground mining. Furthermore, there are special considerations for technology 

being introduced into underground coal mines due to intrinsic safety requirements.   

 

Electromagnetic proximity detection systems have been developed to reduce striking and 

pinning hazards in underground coal mines. Pinning, striking, and crushing accidents in-

volving underground mobile equipment are of particular safety concern for underground 

coal mine workers, resulting in an average of 6.5 deaths per year and many more injuries. 

As a result of these repeated fatalities and injuries, new laws and regulations have been 

promulgated to help introduce electromagnetic proximity detection systems into under-

ground coal mines. These systems rely on machine-mounted magnetic field generators 

and worker-worn magnetic field strength sensors to provide warning and shutdown zones 
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around underground mobile equipment. Enhanced safety features, such as selective ma-

chine-function shutdown, is introduced through the development of a magnetic shell-

based model.  

 

An experimental system is developed to evaluate the performance of electromagnetic 

proximity detection systems. A two-generator system is constructed in a laboratory envi-

ronment, consisting of magnetic field ferrite-core generators and impedance-matching 

circuits. Although a two-generator system does not have practical application in an un-

derground working environment, it can be used to study and improve electromagnetic 

proximity detection system performance. The electromagnetic field model is developed 

through the experimental system to demonstrate position triangulation, which can be used 

to determine the exact position of workers around underground mining equipment.  

 

The performance of electromagnetic based proximity detection systems can be influenced 

by the mining environment and internal circuit components. The experimental system is 

further used to examine the effect of temperature on the magnetic fields produced by the 

generators. Changes in temperature can influence the electric current across the magnetic 

field generators used in underground proximity detection systems. These influences can 

affect the performance of proximity systems by introducing inconsistent magnetic fields. 

 

A control system is developed and demonstrated that reduces the internal and external 

temperature influences on the magnetic field generating circuit. A numerical model is es-

tablished of the experimental two-generator system to develop the control system. Ini-

tially, a proportional gain feedback controller is investigated through simulation. Integral 

gain is added to the controller to improve system response and reduce offset error. The 

controller is implemented into the experimental system. Several scenarios are examined 

to demonstrate that the effects of temperature are minimized by introducing proportion-

integral feedback control.    
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6.2:  Conclusions 

 

The main conclusions of this work are based on the following research results: 

 

• An overview of health and safety surveillance and statistics reveal that machine 

related injuries and fatalities are a significant concern for the mining industry, de-

spite focused laws and regulations. Striking, pinning, and entanglement hazards 

are of particular concern for the underground coal mines, where large machinery 

is used in confined work spaces. Enhanced safety technologies to mitigate these 

hazards are limited by the intrinsic safety requirements of the environment. 

     

• Electromagnetic proximity detection systems have been implemented in under-

ground coal mines to reduce striking, pinning, and entanglement hazards. While 

these systems meet the requirements of an underground coal mine, performance is 

affected by environmental influences. Internal and external temperature changes 

can have a significant impact on electromagnetic proximity detection accuracy. 

 

• Electromagnetic proximity detection system performance can be improved by im-

plementing feedback control. Proportional control improves the magnetic field 

signal transient response, but does not improve steady state error. The addition of 

an integral term to the feedback controller eliminates this error.    

 

6.3:  Contributions 

 

The overall impact of this work provides a greater understanding of the performance re-

lated to electromagnetic based proximity detection systems. Contributions include:   
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• The development of the governing equations that describe electromagnetic field 

generation and detection used in proximity detection systems 

 

• Conception and fabrication of an experimental system that can be used to study 

electromagnetic proximity detection performance 

 

• Demonstration and quantification of internal and external temperature influences 

on the performance of electromagnetic proximity detection systems 

 

• A numeric model that can be used to simulate the magnetic field signal used in 

proximity detection systems  

 

• Design of a simple feedback controller for proximity detection systems can signif-

icantly improve performance 

 

• Application of an experimental feedback controller that can eliminate the influ-

ence of temperature on proximity detection systems 

 

 

6.4:  Future Work 

 

Subsequent research investigations into electromagnetic proximity detection systems 

should focus on further improving performance. While this work shows that application 

of a simple feedback controller can dramatically reduce the influence of temperature, 

there are other factors that can influence proximity detection systems. The presence of 

metal in the magnetic field can also influence proximity detection system accuracy. Pa-

rameter estimation and classification can be used to detect and correct when metal is in-

troduced into the magnetic field. These methods could be incorporated into the control 

system. Also, other technologies could be combined with electromagnetics to enhance 
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performance. Information from alternate sensors would need to be appropriately inte-

grated into the control system.     
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Appendix A 

 

LabVIEW Code 
 

The following program and code was developed to produce the open-loop magnetic field 

and implement the closed-loop feedback controller. 
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The following program and code was developed to monitor the magnetic field generator 

circuit. 
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Appendix B 

 

Matlab Code 
 

The following code was developed to model the magnetic field generating circuit and 

simulate feedback controller performance.  

 

clear all 

close all 

 

%% Model the Amplifier circuit  

 

% Amplifier - Mult. by 10 for probe and sensor induced gains 

K1 = 52.6*10; 

K2 = 51.6*10; 

 

% K1 = 1; 

% K2 = K1; 

 

 

% Transformer 

R_t1 = 0.2179; 

R_t2 = 0.2179; 

L_t1 = 1.8177e-6; 

L_t2 = 1.8177e-6; 

N = 6; 

 

% Antenna 

R_g1 = 0.639592; 
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R_g2 = 0.758925; 

C1 = 2.78204e-8; 

C2 = 2.79155e-8; 

L_g1 = 170.11e-6; 

L_g2 = 168.9e-6; 

 

Plant1 = tf([K1 0],[(L_t1+N^2*L_g1) (R_t1+N^2*R_g1) (N^2)/C1]); 

Plant2 = tf([K2 0],[(L_t2+N^2*L_g2) (R_t2+N^2*R_g2) (N^2)/C2]); 

 

[Wn1,Z1,P1] = damp(Plant1); 

Wd1 = Wn1(1,:)*sqrt(1-Z1(1,:)^2); 

 

[Wn2,Z2,P2] = damp(Plant2); 

Wd2 = Wn2(1,:)*sqrt(1-Z2(1,:)^2); 

 

% frequency vector used for all plots 

 

freqT = linspace(40e3,2*pi*800e3,125e3); 

f = freqT/2/pi; 

 

[M_temp,P_temp] = bode(Plant1,freqT); 

Mag_sim1 = 20*log10(abs(squeeze(mp2h(M_temp,P_temp)))); 

PH_sim1 = angle(squeeze(mp2h(M_temp,P_temp)))*180/pi; 

 

[M_temp,P_temp] = bode(Plant2,freqT); 

Mag_sim2 = 20*log10(abs(squeeze(mp2h(M_temp,P_temp)))); 

PH_sim2 = angle(squeeze(mp2h(M_temp,P_temp)))*180/pi; 

 

 

figure(1); 
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set(gcf,'DefaultLineLineWidth',2.0); 

subplot(211); 

plot(f/1000,Mag_sim1,'-',f/1000,Mag_sim2,'--'); % divide by 1000 for kHz 

ylabel('Magnitude (dB)'); 

legend('Generator 1','Generator 2') 

axis([60 90 -40 40]) 

subplot(212); 

plot(f/1000,PH_sim1,'-',f/1000,PH_sim2,'--'); 

ylabel('Phase (deg)'),xlabel('Frequency (kHz)'); 

axis([60 90 -180 180]) 

 

%% Experimental FRF 

 

FRF = csvread('FRF-Data.csv'); 

 

figure(2) 

set(gcf,'DefaultLineLineWidth',2.0); 

subplot(211); 

plot(FRF(:,1),FRF(:,2),'-',FRF(:,1),FRF(:,4),'--') 

legend('Generator 1','Generator 2') 

ylabel('Magnitude (dB)'); 

axis([60 90 -40 40]) 

subplot(212); 

plot(FRF(:,1),FRF(:,3),'-',FRF(:,1),FRF(:,5),'--') 

ylabel('Phase (deg)'),xlabel('Frequency (kHz)'); 

axis([60 90 -180 180]) 

 

 

 

%% Simulate Response OL Response 
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figure(3) 

[y,t] = step(Plant1); 

[Wn,zeta] = damp(Plant1); 

Q_o = 1/(2*zeta(1,1)) 

plot(t*100,y); 

ylabel('Amplitude (V)'); 

xlabel('Time (ms)') 

set(gca,'XLim',[0 0.25]) 

 

 

figure(4) 

step(Plant2) 

 

a = 0.07; 

% a = 0.383 

w = 73e3; 

% fs = 10*w; 

fs = 800000; 

nCyl = 900; 

t = 0:1/fs:nCyl*1/w; 

x = sin(2*pi*w*t); 

 

sqw = square(2*pi*166*t+100); 

sqw(find(sqw < 0)) = 0; 

x_b = a*sin(2*pi*w*t).*sqw; 

 

t_f = max(t); 

 

figure(5) 
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title('Sinusoidal Input Signal'); 

plot(t, x_b) 

xlabel('Time(s)'); 

ylabel('Amplitude (V)'); 

axis([0 0.012 -0.2 0.2]); 

 

x_sim_ol = lsim(Plant1,x_b,t); 

figure(6) 

% Convert to milliseconds  

plot(t*100, x_sim_ol, t*100, x_b); 

%title('Plant 1 - Sinusoidal Burst Input Response'); 

xlabel('Time(ms)'); 

ylabel('Amplitude (V)'); 

legend('Output Signal','Input Signal') 

set(gca,'XLim',[0 1.2]) 

set(gca,'XTick',(0:0.1:1.2)) 

axis([0 1.2 -2 2]); 

 

%% Controller Design 

 

figure(7) 

h = rlocusplot(Plant1); 

p = getoptions(h); % get options for plot 

p.Title.String = ''; % change title in options 

setoptions(h,p); % apply options to plot   

  

 

% Choose gain value 

CL_u = feedback(Plant1, 1); 

[Wn,zeta] = damp(CL_u); 
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Q_u = 1/(2*zeta(1,1)); 

CL_1 = feedback(series(0.5,Plant1), 1); 

[Wn,zeta] = damp(CL_1); 

Q_1 = 1/(2*zeta(1,1)); 

CL_2 = feedback(series(1.5,Plant1), 1); 

[Wn,zeta] = damp(CL_2); 

Q_2 = 1/(2*zeta(1,1)); 

 

disp('Q_u ='),disp(Q_u) 

disp('Q_1 ='),disp(Q_1) 

disp('Q_2 ='),disp(Q_2) 

 

figure(8) 

% step(CL_1,CL_u,CL_2) 

h = stepplot(CL_1,CL_u,CL_2); 

p = getoptions(h); % get options for plot 

p.Title.String = ''; % change title in options 

p.YLabel.String ='Amplitude (V)'; 

setoptions(h,p); % apply options to plot 

legend('K=0.5','K=1','K=1.5') 

 

figure(9) 

h = bodeplot(CL_1,CL_u,CL_2); 

p = getoptions(h); % get options for plot 

p.Title.String = ''; % change title in options 

setoptions(h,p); % apply options to plot 

legend('K=0.5','K=1','K=1.5') 

 

% PID Control 
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load C_PID2.mat 

figure(10) 

h = rlocusplot(series(C_PID2, Plant1)); 

p = getoptions(h); % get options for plot 

p.Title.String = ''; % change title in options 

setoptions(h,p); % apply options to plot 

 

load C_pi_2.mat 

CL_PI = feedback(series(C_pi_2, Plant1),1); 

[Wn,zeta] = damp(CL_PI); 

Q_PI = 1/(2*zeta(2,1)); 

disp('Q_PI ='),disp(Q_PI) 

 

figure(11) 

h = stepplot(CL_PI); 

p = getoptions(h); % get options for plot 

p.Title.String = ''; % change title in options 

p.YLabel.String ='Amplitude (V)'; 

setoptions(h,p); % apply options to plot 

%legend('K=0.5','K=1','K=1.5') 

 

figure(12) 

h = bodeplot(CL_PI); 

p = getoptions(h); % get options for plot 

p.Title.String = ''; % change title in options 

setoptions(h,p); % apply options to plot 

%legend('K=0.5','K=1','K=1.5') 
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%% Simulate CL response 

 

sqw = square(2*pi*166*t+100); 

sqw(find(sqw < 0)) = 0; 

%x_b = 1.414*sin(2*pi*w*t).*sqw; 

x_b = sin(2*pi*w*t).*sqw; 

x_b_rms = rmsrun(x_b); 

t2 = linspace(0,max(t),length(x_b_rms)); 

 

      

figure(13) %rms of the signals 

xs = lsim(CL_u,x_b,t); 

xe = lsim(1/(1+series(1,Plant1)),x_b,t); 

xs_rms = rmsrun(xs); 

xe_rms = rmsrun(xe); 

plot(t2,x_b_rms,t2,xs_rms,t2,xe_rms) 

xlabel('Time(s)'); 

ylabel('Amplitude'); 

legend('set point','output','error') 

 

figure(14) 

plot(t*100,xs,'b',t*100,xe,'r',t*100,sqw,'g') 

xlabel('Time(ms)'); 

ylabel('Amplitude (V)'); 

legend('output','error','set point') 

set(gca,'XLim',[0 1.2]) 

set(gca,'XTick',(0:0.1:1.2)) 

axis([0 1.2 -1.25 1.25]); 

 

figure(15) 
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xs = lsim(CL_PI,x_b,t); 

xe = lsim(1/(1+series(C_PID1,Plant1)),x_b,t); 

plot(t*100,xs,'b',t*100,xe,'r',t*100,sqw,'g') 

xlabel('Time(ms)'); 

ylabel('Amplitude (V)'); 

legend('output','error','set point') 

set(gca,'XLim',[0 1.2]) 

set(gca,'XTick',(0:0.1:1.2)) 

axis([0 1.2 -1.25 1.25]); 

 

The following coded was created to calculate the running RMS average. 

 

function [ x_rms ] = rmsrun( sig ) 

%UNTITLED Summary of this function goes here 

%   Detailed explanation goes here 

x_rms = NaN(size(sig));  

for n = 151:length(sig)-151 

  x_rms(n) = rms(sig(n-150:n+150));  

end 

end 
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